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Abstract

Confirmatory factor analysis (CFA) is widely used for examining hypothesized relations among
ordinal variables (e.g., Likert-type items). A theoretically appropriate method fits the CFA model
to polychoric correlations using either weighted least squares (WLS) or robust WLS. Importantly,
this approach assumes that a continuous, normal latent process determines each observed variable.
The extent to which violations of this assumption undermine CFA estimation is not well-known.
In this article, the authors empirically study this issue using a computer simulation study. The
results suggest that estimation of polychoric correlations is robust to modest violations of
underlying normality. Further, WLS performed adequately only at the largest sample size but led
to substantial estimation difficulties with smaller samples. Finally, robust WLS performed well
across all conditions.

Variables characterized by an ordinal level of measurement are common in many empirical
investigations within the social and behavioral sciences. A typical situation involves the
development or refinement of a psychometric test or survey in which a set of ordinally
scaled items (e.g., O = strongly disagree, 1 = neither agree nor disagree, 2 = strongly agree)
is used to assess one or more psychological constructs. Although the individual items are
designed to measure a theoretically continuous construct, the observed responses are
discrete realizations of a small number of categories. Statistical methods that assume
continuous distributions are often applied to observed measures that are ordinally scaled. In
circumstances such as these, there is the potential for a critical mismatch between the
assumptions underlying the statistical model and the empirical characteristics of the data to
be analyzed. This mismatch in turn undermines confidence in the validity of the conclusions
that are drawn from empirical data with respect to a theoretical model of interest (e.g.,
Shadish, Cook, & Campbell, 2002).

This problem often arises in confirmatory factor analysis (CFA), a statistical modeling
method commonly used in many social science disciplines. CFA is a member of the more
general family of structural equation models (SEMs) and provides a powerful method for
testing a variety of hypotheses about a set of measured variables. By far the most common
method of estimation within CFA is maximum likelihood (ML), a technique which assumes
that the observed variables are continuous and normally distributed (e.g., Bollen, 1989, pp.
131-134). These assumptions are not met when the observed data are discrete (as occurs
when using ordinal scales), thus significant problems can result when fitting CFA models
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for ordinal scales using ML estimation (e.g., B. Muthén & Kaplan, 1985). Although several
alternative methods of estimation have been available for some time, these have only
recently become more accessible to applied researchers through the continued development
of SEM software. Despite this increased availability, key unanswered questions remain
about the accuracy, validity, and empirically informed guidelines for the optimal use of
these methods, particularly with respect to conditions commonly encountered in behavioral
research. The goal of our article was to systematically and empirically address several of
these important questions.

Structural Equation Modeling (SEM)

SEM is a powerful and flexible analytic method that plays a critically important role in
many empirical applications in social science research. Because the general linear model is
embedded within SEM, this modeling framework can be used in a wide variety of
applications. The general goal of SEM is to test the hypothesis that the observed covariance
matrix for a set of measured variables is equal to the covariance matrix implied by an
hypothesized model. This relationship can be formally stated as

Z:Z(m* (1)

where X represents the population covariance matrix of a set of observed variables and X(6)
represents the population covariance matrix implied by @, a vector of model parameters. The
vector @ thus defines the form of a particular SEM through the specification of means and
intercepts, variances and covariances, regression parameters, and factor loadings.

A particular parameterization of @ leads to the well-known CFA model (J6reskog, 1969). In
CFA, the covariance matrix implied by @ is a function of W, a matrix of variances and
covariances among latent factors; A, a matrix of factor loadings; and ®,, a matrix of
measurement errors (i.e., uniqueness). The model-implied covariance structure is

Z(H):A‘I‘A'+@s. @

Usual assumptions for CFA are that the model is properly specified (i.e., the model
hypothesized in Equation 2 corresponds directly to the model that exists in the population),
that @, is independent of the vector » of latent factors, and that the measurement errors
themselves are uncorrelated (i.e., @, is a diagonal matrix), although this latter condition is to
some degree testable.

ML is the most commonly applied method for estimating the model parameters in 6. In
addition to the usual CFA assumptions named above, ML assumes that the sample
covariance matrix is computed on the basis of continuous, normally distributed variables.1
Given adequate sample size, proper model specification, and multivariately normally
distributed data (or more specifically, no multivariate kurtosis; Browne, 1984), ML provides
consistent, efficient, and unbiased parameter estimates and asymptotic standard errors as
well as an omnibus test of model fit (Bollen, 1989; Browne, 1984).

IThis assumption specifically applies to endogenous variables, or residuals (see Bollen, 1989, pp. 126 —127). Given our focus on the
CFA model, all observed variables are endogenous here.
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However, in many applications in the behavioral sciences, the observed variables are not
continuously distributed.? Instead, variables are often observed on a dichotomous or ordinal
scale of measurement. It is well-known from both statistical theory and prior simulation
studies that ML based on the sample product-moment correlation or covariance matrix
among ordinal observed variables does not perform well, especially when the number of
observed categories is small (e.g., five or fewer). In particular, the chi-square model fit
statistic is inflated (Babakus, Ferguson, & Joreskog, 1987; Green, Akey, Fleming,
Hershberger, & Marquis, 1997; Hutchinson & Olmos, 1998;B. Muthén & Kaplan, 1992),
parameters are underestimated (Babakus et al., 1987;B. Muthén & Kaplan, 1992), and
standard error estimates tend to be downwardly biased (B. Muthén & Kaplan, 1985, 1992).
An alternative approach to estimating CFA models for ordinal observed data involves the
estimation and analysis of polychoric and polyserial correlations.

Polychoric Correlations

There is a long history of theory and research with polychoric and polyserial correlations
dating back to Pearson (1901). The polychoric correlation estimates the linear relationship
between two unobserved continuous variables given only observed ordinal data, whereas the
polyserial correlation measures the linear relationship between two continuous variables
when only one of the observed distributions is ordinal and the other is continuous. Thus,
calculation of a polychoric correlation is based on the premise that the observed discrete
values are due to an unobserved underlying continuous distribution. We adopt the
terminology of B. Muthén (1983, 1984) to refer to an unobserved univariate continuous
distribution that generates an observed ordinal distribution as a latent response distribution.

The relationship between a latent response distribution, y*, and an observed ordinal
distribution, y, is formalized as

y=¢,if Te<y" <Tes1, (3)

with thresholds z as parameters defining the categoriesc =0, 1, 2, ..., C — 1, where g = —c0
and z¢ = 0. Hence, the observed ordinal value for y changes when a threshold 7 is exceeded
on the latent response variable y*. The primary reason that ML based on sample product—
moment relationships does not perform well with ordinal observed data is that the
covariance structure hypothesis (see Equation 1) holds for the latent response variables but
does not generally hold for the observed ordinal variables (Bollen, 1989, p. 434).

Polychoric correlations are typically calculated using the two-stage procedure described by
Olsson (1979). In the first stage, the proportions of observations in each category of a
univariate ordinal variable are used to estimate the threshold parameters for each univariate
latent response variable separately. Formally, for an observed ordinal variable yy, with
thresholds denoted by a;, i =0, ..., s, and y,, with thresholds denoted by b;, j =0, ..., r, the
first step is to estimate

ai=07'(P;) (4)

and

2Strictly speaking, all observed measurements are discrete, but here we are talking about coarse categorization of a theoretically
continuous distribution resulting in a small number of discrete levels.

Psychol Methods. Author manuscript; available in PMC 2011 August 9.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Flora and Curran

Page 4
bj=07'(P.)), (5)

where Pjj is the observed proportion in cell (i, j), Pj. and P j are observed cumulative

marginal proportions of the contingency table of y; and y,, and cD]" represents the inverse of
the univariate standard normal cumulative distribution function. In the second stage, these
estimated threshold parameters are used in combination with the observed bivariate
contingency table to estimate, via maximum likelihood, the correlation that would have been
obtained had the two latent response variables been directly observed. The log-likelihood of
the bivariate sample is

f:an+22ﬂi.ﬂn"h.f’

i=1 j=1 (6)

where K is a constant, n; j denotes the frequency of observations in cell (i, j), and z; j denotes
the probability that a given observation falls into cell (i, j) (Olsson, 1979).

Critically important in the calculation of a polychoric correlation is the assumption that the
pair of latent response variables has a bivariate normal distribution. This assumption
becomes evident in the reference to the univariate standard normal distribution in the
calculation of the thresholds (see Equations 4 and 5). Under the assumption of bivariate

normality for y} and y3, Olsson (1979) gave the probability z; ; (see Equation 6) that an
observation falls into a given cell of the contingency table for y; and y, as

7 j=02(a;, bj) — ®a(aj-1, bj) — ©r(a;, bj1)+Dr(ai-1,bj-1), (7

where @ is the bivariate normal cumulative density function with correlation p. The ML
estimate of p yields the polychoric correlation between the observed ordinal variables y; and
y2. Olsson reported limited simulation results showing that this two-stage method for
calculating a polychoric correlation between two ordinal variables gives an unbiased
estimate of the correlation between a pair of bivariate normal latent response variables.

Although the assumption of bivariate normality for latent response variables has been
criticized as unrealistic in practice (e.g., Lord & Novick, 1968; Yule, 1912), other
researchers have advocated the practical convenience of this assumption (e.g., B. Muthén &
Hofacker, 1988; Pearson & Heron, 1913). Specifically, regardless of whether a pair of
observed ordinal variables represents the realization of a categorized bivariate normal
distribution or some other bivariate continuous distribution, if the continuous distributions
are correlated, one would expect to see evidence for this correlation in the observed
contingency table for the two ordinal variables. That is, for a positive correlation, inspection
of the relative frequencies in the individual cells of the contingency table for the two ordinal
variables would be expected to reflect that lower values on one ordinal variable would be
associated with lower values on the other ordinal variable, whereas higher values on one
variable would be associated with higher values on the other. Given that the contingency
table supplies the only observed data for estimation of the correlation between the latent
continuous variables, it is necessary to specify some (albeit unknown) distribution for the
underlying continuous variables to allow estimation of their correlation. Because of its well-
known mathematical properties, the assumption of a bivariate normal distribution
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considerably facilitates estimation of the correlation, as shown in Equations 4-7. Although
two correlated nonnormal y* variables would be expected to generate a contingency table
with similar patterns to that observed for two normal y* variables with the same correlation,
the extent to which calculation of the polychoric correlation is robust to this nonnormality
remains a matter of empirical investigation. Our goal in this article was to pursue such an
empirical examination.

To our knowledge, Quiroga (1992) represents the only simulation study that has empirically
evaluated the accuracy of polychoric correlations under violations of the latent normality
assumption. Quiroga manipulated the skewness and kurtosis of two continuous variables
(i.e., y* variables) to examine the effects of nonnormality on polychoric correlation
estimates between two variables, each with four observed ordinal categories. The polychoric
correlation values consistently overestimated the true correlation between the nonnormal
latent response variables. However, the extent of the overestimation was small, with bias
typically less than 2% of the true correlation. Although the findings of Quiroga suggest that
polychoric correlations are typically robust to violation of the underlying y* normality
assumption, to our knowledge no prior studies have examined the effect of violating this
assumption on fitting CFAs to polychoric correlations. That is, demonstrating lack of bias in
the estimation of polychoric correlations is necessary but not sufficient for inferring the
robustness of CFAs fitted to these correlations more generally. This is particularly salient
when considering alternative methods for fitting these models in practice. Two important
methods of interest to us in this article are fully weighted least squares (WLS) and robust
WLS.

WLS Estimation

Both analytical and empirical work have demonstrated that simply substituting a matrix of
polychoric correlations for the sample product-moment covariance matrix in the usual ML
estimation function for SEM is inappropriate. Although this approach will generally yield
consistent parameter estimates, it is known to produce incorrect test statistics and standard
errors (Babakus et al., 1987; Dolan, 1994; Rigdon & Ferguson, 1991). Over the past several
decades, a WLS approach has been developed for estimating a weight matrix based on the
asymptotic variances and covariances of polychoric correlations that can be used in
conjunction with a matrix of polychoric correlations in the estimation of SEM models (e.g.,
Browne, 1982, 1984; Joreskog, 1994;B. Muthén, 1984;B. O. Muthén & Satorra, 1995).

WLS applies the fitting function

Fys=ls =@ W'[s = ()], ®)

where s is a vector of sample statistics (i.e., polychoric correlations), a(#) is the model-
implied vector of population elements in X(8), and W is a positive-definite weight matrix.
Browne (1982, 1984) showed that if a consistent estimator of the asymptotic covariance
matrix of s is chosen for W, then Fyy| g leads to asymptotically efficient parameter estimates
and correct standard errors as well as a chi-square-distributed model test statistic.
Furthermore, Browne (1982, 1984) presented formulae for estimating the correct asymptotic
covariance matrix in the context of continuously distributed observed data using observed
fourth-order moments. Because these formulae hold without specifying a particular
distribution for the observed variables, Fyy s is often called the asymptotically distribution
free (ADF) estimator when used with a correct asymptotic covariance matrix.
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Browne (1982, 1984) primarily focused on WLS as applied to continuous but nonnormal
distributions, whereas B. Muthén (1983, 1984) presented a “continuous/categorical variable
methodology” (CVM) for estimating SEMs that allows any combination of dichotomous,
ordered categorical, or continuous observed variables. With CVM, bivariate relationships
among ordinal observed variables are estimated with polychoric correlations, and the SEM
is fit using WLS estimation. The key contribution of CVM is that it essentially generalizes
Browne’s work with Fyy_g beyond the case of continuous observed data, as Muthén
described the estimation of the correct asymptotic covariance matrix among polychoric
correlation estimates (B. Muthén, 1984;B. O. Muthén & Satorra, 1995). Thus, unlike
normal-theory estimation, CVM provides asymptotically unbiased, consistent, and efficient
parameter estimates as well as a correct chi-square test of fit with dichotomous or ordinal
observed variables. Parallel but independent research by Jéreskog (Jéreskog, 1994; Jéreskog
& Sorbom, 1988) similarly generalized Browne’s work to the estimation of the correct
asymptotic covariance matrix among polychoric correlations.3

Despite its asymptotic elegance, there are two potential limitations of full WLS estimation in
research applications of CFA with ordinal data. First, although limited prior simulation
evidence suggests that the computation of polychoric correlations is generally robust to
violations of the latent normality assumption (Quiroga, 1992), to our knowledge the
ramifications of these violations for the estimation of asymptotic covariances among
polychoric correlations have yet to be considered. Thus, although polychoric correlations
may be generally unbiased, CFA model test statistics and standard errors might be adversely
affected because of biases in the asymptotic covariance matrix introduced by nonnormality
among latent response variables. Second, a frequent criticism against full WLS estimation is
that the dimensions of the optimal weight matrix W are typically exceedingly large and
increase rapidly as a function of the number of indicators in a model. By virtue of its size in
the context of a large model (i.e., a model with many observed variables), W is often
nonpositive definite and cannot be inverted when applying the WLS fitting function (e.g.,
Bentler, 1995; West, Finch, & Curran, 1995). Furthermore, calculation of these asymptotic
values requires a large sample size to produce stable estimates. Specifically, Joreskog and
Soérbom (1996) suggested that a minimum sample size of (k + 1)(k + 2)/2, where k is the
number of indicators in a model, should be available for estimation of W. As the elements of
W have substantial sampling variability when based on small sample sizes, this instability
has an accumulating effect as the number of indicators in the model increases (Browne,
1984).

Thus, it is well-known that significant problems arise when using full WLS estimation in
conditions commonly encountered in social science research. Simulation studies have shown
that chi-square test statistics are consistently inflated when ADF estimation is applied to
sample product-moment covariance or correlation matrices of continuous observed data
(e.g., Chou & Bentler, 1995; Curran, West, & Finch, 1996; Hu, Bentler, & Kano, 1992).
Similarly, simulation studies applying WLS estimation to the analysis of polychoric
correlation matrices have also reported inflated chi-square test statistics (Dolan, 1994;
Hutchinson & Olmos, 1998; Potthast, 1993) and negatively biased standard error estimates
(Potthast, 1993). In particular, both Dolan and Potthast reported that these problems worsen
as a function of increasing model size (i.e., number of indicators) and decreasing sample
size. Thus, full WLS is often of limited usefulness in many applied research settings.

3AIthough the methods of B. Muthén and Joreskog for estimating the asymptotic covariance matrix are highly similar, they differ in
their treatment of the threshold parameters categorizing latent response distributions into observed ordinal distributions. The
simulation study by Dolan (1994) suggested that the Joreskog approach to estimating the asymptotic covariance matrix elicits virtually
identical results as the Muthén approach with respect to the estimation of CFA models.
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Robust WLS

To address the problems encountered when using full WLS with small to moderate sample
sizes, B. Muthén, du Toit, and Spisic (1997; see also L. K. Muthén & Muthén, 1998, pp.
357-358) presented a robust WLS approach that is based on the work of Satorra and
colleagues (Chou, Bentler, & Satorra, 1991; Satorra, 1992; Satorra & Bentler, 1990).4 With
this method, parameter estimates are obtained by substituting a diagonal matrix, V, for W in
Equation 8, the elements of which are the asymptotic variances of the thresholds and
polychoric correlation estimates (i.e., the diagonal elements of the original weight matrix).
Once a vector of parameter estimates is obtained, a robust asymptotic covariance matrix is
used to obtain parameter standard errors. Calculation of this matrix involves the full weight
matrix W; however, it need not be inverted. Next, Muthén et al. described a robust
goodness-of-fit test via calculation of a mean- and variance-adjusted chi-square test statistic.
Calculation of this test statistic also involves the full weight matrix W but similarly avoids
inversion. An interesting aspect of this robust WLS method is that the value for the model
degrees of freedom is estimated from the empirical data, in a manner inspired by
Satterthwaite (1941; cited in Satorra, 1992), rather than being determined directly from the
specification of the model. The robust goodness-of-fit test presented by Muthén et al.
essentially involves the usual chi-square test statistic multiplied by an adjustment akin to the
Satorra and Bentler (1986, 1988) robust chi-square test statistic, with model degrees of
freedom estimated from the data.® Detailed formulae describing estimation of standard
errors and model fit statistics with robust WLS were given by B. Muthén et al. as well as by
L. K. Muthén and Muthén (1998, pp. 357-358).

The Current Study

Our motivating goal was to provide an empirical evaluation of a set of specific hypotheses
derived from the statistical theory underlying the calculation of polychoric correlations and
their use in estimating CFAs in applied research. A small number of simulation studies,
most notably by Potthast (1993; see also Babakus et al., 1987; Dolan, 1994; Hutchinson &
Olmos, 1998), have previously evaluated the use of polychoric correlations with full WLS
estimation for CFA. In each of these studies, researchers generated y* variables from
continuous, multivariate normal data with known factor structures. Different sets of
threshold values were then applied to these normal y* variables to create ordinal y variables
with varying observed distributions. These studies generally found that as the skewness or
positive kurtosis of the observed (ordinal) variables departed from zero, the estimation of the
known factor structure among the unobserved normal y* variables deteriorated despite that
the statistical theory underlying CFA with polychoric correlations makes no explicit
assumption about the skewness and kurtosis of the observed ordinal variables. This finding
likely occurred in part because highly kurtotic ordinal distributions produce contingency
tables with low expected cell frequencies, which Olsson (1979) speculated would lead to
poor polychoric correlation estimates and which Brown and Bendetti (1977) showed would
lead to biased tetrachoric correlations.

In the present study, rather than manipulating the threshold values along normal y*
distributions to generate y variables of varying observed skewness and kurtosis, we instead
manipulated the unobserved skewness and kurtosis of the y* variables. In this way, we
directly evaluated robustness of CFA with polychoric correlations under violation of the

4J6reskog and Sorbom (1996) described a similar approach, termed diagonally weighted least squares.

A drawback of this robust WLS method is that the robust chi-square values cannot be used to compare nested models because the
degrees of freedom may vary within a given model specification.

The tetrachoric correlation is a special case of the polychoric correlation where both observed variables are dichotomous.

Psychol Methods. Author manuscript; available in PMC 2011 August 9.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Flora and Curran Page 8

explicit, theoretical assumption that y* variables underlying polychoric correlations be
normally distributed. Furthermore, if there is little practical consequence to violation of the
latent normality assumption, we will have partially demonstrated that this assumption
merely provides a mathematical convenience facilitating the calculation of correlations
among latent response variables, as implied by Pearson and Heron (1913) and B. Muthén
and Hofacker (1988).7 Thus, our study focused on the systematic variation of the
unobserved distribution of y* rather than on the observed distribution of y. This is an
important distinction given that manipulation of the latter has been the sole focus of prior
research (e.g., Potthast, 1993).

Statistical theory and prior empirical findings have highlighted three issues of critical
importance when considering the estimation of CFA models (and SEMs in general) using
polychoric correlations. First, although limited evidence suggests that polychoric
correlations are robust to violations of bivariate normality for continuous latent response
variables eliciting observed ordinal variables, we are aware of no prior research examining
whether this robustness extends to the estimation of CFA model parameters, test statistics,
and standard errors using WLS estimation with a correct asymptotic covariance matrix.
Second, we are aware of no prior research examining the stability and accuracy of robust
WLS under either bivariate normality or bivariate nonnormality for latent response
variables. This is a promising method for use in social science research, and the finite
sample performance of robust WLS is an issue of key interest. Finally, we are not aware of
any existing systematic study that explores these questions with respect to the specific
number of discrete levels observed in the ordinal scale; this has significant implications in
the design of item response scales in anticipation of using these techniques in practice. We
explore all three of these issues in detail in this article.

We drew on statistical theory and prior empirical research to generate several hypotheses
that we empirically examined using a comprehensive computer simulation study. First,
consistent with Quiroga (1992), we predicted that the estimates of polychoric correlations
would be relatively unbiased as a function of minor to modest violations of normality of the
latent response distributions. Next, we had several hypotheses pertaining to full WLS
estimation of CFA models using polychoric correlations. Consistent with Dolan (1994) and
Potthast (1993), we predicted that full WLS would lead to inflated test statistics and
underestimated parameter standard errors and that these biases would worsen substantially
as a function of increasing model size (i.e., number of indicators) and decreasing sample
size. Although we focused on the chi-square test statistics as a primary outcome, this was
essentially an examination of the discrepancy function upon which all commonly used fit
indices for SEM are based. Thus, conditions that contribute to inflated chi-square values
were also expected to contribute to bias in other fit indices, causing them also to suggest
poorer fit.

A polychoric correlation matrix is a consistent estimator of the population correlation matrix
for continuous latent response variables. Thus, like Rigdon and Ferguson (1991) and
Potthast (1993), we expected to find unbiased parameter estimates independently of sample
size and model complexity. However, because nonnormality in latent response distributions
may introduce small positive biases in polychoric correlations (Quiroga, 1992), we predicted
that nonnormality in latent response distributions would create modestly positively biased
parameter estimates. Further, because calculation of the asymptotic covariance matrix

Titis possible to create any ordinal distribution from a normal distribution given the correct set of threshold values. Likewise, given an
observed ordinal distribution in a practical setting (i.e., not an artificially simulated distribution), it is impossible to know whether it
was generated from a normal or nonnormal continuous variable. However, applied researchers may be highly skeptical of whether it is
realistic to assume that the latent response variable is in fact normal (e.g., it may represent propensity toward an abnormal behavior,
such as illegal drug use).
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among polychoric correlations takes into account fourth-moment information based on the
distribution-free technique of Browne (1984), we did not predict that underlying
nonnormality would have a substantial effect on full WLS chi-square test statistics or
standard errors at larger sample sizes for less complex models.

Finally, like full WLS estimation, we expected that robust WLS would result in unbiased
parameter estimates with normal latent response distributions and modestly overestimated
parameters with nonnormal latent response distributions. Drawing from the results of Curran
et al. (1996) relating to the Satorra—Bentler corrections applied to non-normal but
continuous measures, we predicted that robust WLS would generally produce unbiased
parameter standard errors and test statistics across a wider range of sample sizes and model
complexity than would full WLS. However, it is not known to what degree robust WLS
would provide accurate estimates at the smallest sample sizes for the most complex models.
Taken together, we believe that our results make unique contributions both to the
understanding of the finite sampling properties of these asymptotic estimators and to the
provision of recommendations for applied researchers using these methods in practice.

We used Monte Carlo computer simulation methodology to empirically study the effects of
varying latent response distribution, sample size, and model size on the computation of chi-
square model test statistics, parameter estimates, and associated standard errors pertaining to
CFA:s fitted to ordinal data. For each simulated sample of ordinal data, we calculated the
corresponding polychoric correlation matrix and fit the relevant population model using both
full and robust WLS estimation.

Continuous Latent Response Distributions

We generated random samples from five different continuous y* distributions. The first was
multivariate normal, whereas the remaining four represented increasing levels of
nonnormality. We carefully chose the nonnormal distributions according to two criteria.
First, the distributions were selected to allow examination of the separate effects of
skewness and kurtosis on the outcomes of interest. Second, the distributions were selected to
be representative of levels of nonnormality commonly encountered in applied psychological
research as reported by Micceri (1989).8 Table 1 presents specific population characteristics
of each y* distribution. Each sample of multivariate data was generated to be consistent with
a given population correlation structure (see Model Specifications below).

Ordinal Observed Distributions

After sampling continuous data from the distributions described above, we transformed
these samples into two-category and five-category ordinal data by applying a set of
thresholds that remained constant across all y* distributions. For the two-category condition,
a single threshold was used to transform the continuous response distributions into the
observed dichotomy. For the five-category condition, a set of four thresholds was used to
transform the data.® For the four nonnormal conditions, although these sets of thresholds

8our motivating goal for this study was not to determine what extreme level of nonnormality for y* would guarantee a poorly
estimated CFA model; that is, we had no interest in “breaking” the estimator. Instead, we sought to assess the performance of the
methods used herein under conditions of nonnormality commonly encountered in practice. Although this decision potentially limits
the generalizability of our findings, it also increases our ability to more closely examine realistic distributions that might commonly

occur in practice.

In the five-category condition, we used the Case 1 threshold set from B. Muthén and Kaplan (1985), such that that categorization of a
normal y* population distribution would result in an ordinal y distribution with zero skewness and kurtosis. This same threshold set
was also applied to each nonnormal y*distribution.
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resulted in observed ordinal distributions with nonzero levels of skewness and kurtosis,
categorization resulted in y variables that were much less skewed and kurtotic than the y*
population distributions used to generate them. See Table 1 for population characteristics of
each y distribution.

Model Specifications

Each sample of multivariate data we generated had a population correlation matrix
conforming to one of four factor model specifications that hold for the y* latent response
variables. We selected these models to be representative of CFA model specifications that
might be encountered in practice (e.g., models showing the relationships among a set of
Likert-type variables). Model 1 (see Figure 1) consisted of a single factor measured by five
ordinal indicators (i.e., observed y variables), each of which was determined by a latent
response variable (i.e., an unobserved y* variable), as described above. Model 2 (see Figure
2) consisted of a single factor measured by 10 indicators. Model 3 (see Figure 3) consisted
of two correlated factors each measured by five indicators. Finally, Model 4 (see Figure 4)
was identical to Model 3, except each factor was measured by 10 indicators. As with Model
1, each of the ordinal indicators for Models 2, 3, and 4 was determined by its own y*
variable.

To facilitate interpretation, we defined the values of the population parameters to be
homogeneous across all four model specifications. That is, within and across the models, all
factor loadings were equal (As = .70), and all uniquenesses were equal (®,s = .51).
Importantly, these loadings represent the regression of the latent response variables (i.e., the
y* variables), and not the ordinal indicators, on the factor. Models 3 and 4 included an
interfactor correlation, which was set to W,1 = .30 for both. All y* distributions were

standardized to have a mean of zero and standard deviation equal to one, such that ,1,7-+®£,-:1

for y7. The variances of the factors and of the uniquenesses were all set to equal one. Thus,
the proposed models for the latent response variables were scale invariant (Cudeck, 1989, p.
326), and it was valid to define the implied population covariance matrices for data
simulation in terms of correlations.

Data Generation and Analysis

For each combination of y* distribution and model specification described above, we
generated random samples of four different sizes: 100, 200, 500, and 1,000. We replicated
the 5 (distributions) x 4 (model specifications) x 4 (sample sizes) x 2 (number of categories)
= 160 independent cells of the study 500 times each, using EQS (Version 5.7b; Bentler,
1995) to generate all data for the study.10 For each replication, we fit the relevant population
factor model using both full and robust WLS estimation as implemented with Mplus
(Version 2.01; L. K. Muthén & Muthén, 1998).11

10we generated the raw data with the EQS implementation of the methods of Fleishman (1978), who presented formulae for
simulating univariate data with nonzero skewness and kurtosis, and Vale and Maurelli (1983), who extended Fleishman’s method to
allow simulation of multivariate data with known levels of univariate skewness and kurtosis and a known correlational structure. To
ensure that EQS properly created the data according to the desired levels of skewness and kurtosis for the y* variables, we generated a
set of continuous data conforming to Model 1 with N = 50,000 for each level of our manipulation of the y* distributions. The values of
univariate skewness and kurtosis calculated from these large-sample data closely reflected the nominal population values. Previous
studies have also successfully implemented this method of data generation (e.g., Chou et al., 1991; Curran et al., 1996; Hu et al.,
1992).

11Although we estimated our models using the commercial software package, Mplus (L. K. Muthén & Muthén, 1998), equivalent
results would be expected using any software package with the capability for estimating polychoric correlations and their asymptotic
variances and covariances (e.g., PRELIS/LISREL: J6reskog & S6rbom, 1988, 1996; Mx: Neale, Boker, Xie, & Maes, 2002).
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Study Outcomes

We began by examining rates of improper solutions across all study conditions. An
improper solution was defined as a nonconverged solution or a solution that converged but
resulted in one or more out-of-bound parameters (e.g., Heywood cases). Because the
underlying purpose of our study was to explicitly evaluate our proposed research hypotheses
under conditions commonly encountered in applied research settings, we defined improper
solutions to be invalid empirical observations. To maximize the external validity of our
findings, we removed improper solutions from subsequent analyses (see Chen, Bollen,
Paxton, Curran, & Kirby, 2001, for further discussion of this strategy).12 We considered
three major outcomes of interest: the chi-square test statistics, parameter estimates (i.e.,
factor loadings and factor correlations), and standard errors.

We examined the mean relative bias (RB; or percentage bias) of each outcome across all
study conditions. The general form of this statistic is

(9)

where 4 is the estimated statistic (i.e., chi-square test statistic, CFA parameter estimate, or
standard error) from a given replication, and @ is the relevant population parameter. For each
outcome, we calculated the mean RB across replications within a given condition.
Consistent with prior simulation studies (e.g., Curran et al., 1996; Kaplan, 1989), we
considered RB values less than 5% indicative of trivial bias, values between 5% and 10%
indicative of moderate bias, and values greater than 10% indicative of substantial bias.

For the chi-square test statistics from full WLS estimation, we calculated relative bias with
respect to the degrees of freedom for each model specification, given that this value reflects
the expected value of a chi-square distribution. With robust WLS estimation, the degrees of
freedom for the chi-square test statistic are estimated from the data and, therefore, the
expected value of the chi-square statistic varies across samples within the same model
specification. Thus, for each replication within a given condition, we used the estimated
degrees of freedom to calculate the relative bias of the chi-square statistic elicited from the
robust method. We then calculated the mean RB across samples within a given study
condition.

Because of the large number of factor loadings estimated both within and across
replications, we examined the mean factor loading values to summarize our results more
efficiently. This strategy was appropriate given the homogeneous values of factor loadings
within each model specification. Specifically, within a given cell of the study, we first
calculated the mean across replications of each individual loading parameter separately (e.g.,

for Model 1, we obtained 7;,, 25, 231, 41 @1d 15;). In addition, we calculated the sample
variance of each factor loading across replications. Because the population value of each
loading parameter was homogeneous (i.e., .70) across and within all replications, we
calculated the mean of these factor loadings within each cell of the study. Thus, for each cell
of the experimental design we present

12 pgditional analyses reflected that the simultaneous inclusion of both proper and improper solutions resulted in modest changes in
the summary statistics of the outcomes under study; however, the overall conclusions based only on the proper solutions remain
substantively unchanged. Thus, there is no evidence suggesting that the omission of the improper solutions poses a threat to either the
internal or the external validity of our study.
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P __
Pooled Mean=P~! ZT,
i=1 (10)

where P is the number of indicators in the model. Also, to provide a statistic analogous to
the standard deviation of the mean factor loading, we calculated the square root of the mean
of the factor loading variances. Thus, for each cell, we present

[3
Pooled S D= P*‘ZVAR(I-).
i=1 (11)

Finally, we evaluated standard error estimation by comparing the mean value of the
estimated standard error for the parameter of interest to the empirical estimate of the
standard error as measured by the standard deviation of the parameter estimates across the
replications of a given cell.

Polychoric Correlation Estimates

Our first hypothesis related to the accuracy of polychoric correlation estimates resulting
from the various latent response distribution (i.e., y*) manipulations we used to generate the
data conforming to population-level CFA models. Because there were only two possible
correlation values implied by our CFA model specifications of interest, p = .49 (the
correlation between two indicators loading on the same factor) and p = .147 (the correlation
between two indicators loading on separate factors), we considered the effect of varying y*
distribution on these two population correlation values. Because polychoric correlations are
calculated from bivariate distributions and because we wanted to focus on the robustness of
polychoric correlations across varying y* distributions prior to fitting CFA models, we
began by generating 500 replications of bivariate data for each of two population correlation
values (.49 and .147) within each combination of the y* distribution, y* categorization (two
or five categories), and sample size conditions described above. Although this portion of our
study analyzed only bivariate data, our results regarding the accuracy of polychoric
correlations may be generalized across all fully multivariate distributions implied by all four
of our CFA model specifications.

Table 2 summarizes results for the polychoric correlations in the different study conditions.
When the data were generated from a bivariate normal y* distribution, the mean polychoric
correlation across replications was essentially equal to its population value (mean RB was
less than 1% in nearly every cell with underlying skewness = 0 and underlying kurtosis = 0).
The polychoric correlation estimates tended to become positively biased as a function of
increasing nonnormality in the y* distributions; however, mean RB remained under 10% in
almost all cells. For example, Figure 5 presents box plots illustrating the distributions of
polychoric correlation estimates of p = .49 obtained with N = 1,000 for the five-category
condition. The figure reveals that although the correlation estimates were frequently
positively biased, the center of these distributions did not depart substantially from the
population correlation value, even with y* nonnormality. Overall, correlation estimates of p
=.147 rarely exceeded .16, and correlation estimates p = .49 rarely exceeded .52. Finally,
sample size did not have any apparent effect on the accuracy of the polychoric correlations,
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although there was a tendency for correlations calculated from two-category data to be
slightly more biased than those calculated from five-category data.

Theory would not predict that varying the thresholds across observed variables would
influence our findings described above. However, to examine this possibility empirically,
we generated additional bivariate y* data from the condition with skewness = 1.25 and

kurtosis = 3.75. We applied the threshold values to y] to create a five-category y;
distribution with the same skewness and kurtosis values as given in the moderate versus

moderate case in Table 1, but different threshold values were applied to yj resulting in a
five-category population distribution for y, with skewness = —2.36 and kurtosis = 5.15.
When samples of size N = 1,000 (again with 500 replications) were generated from this
bivariate population distribution with true correlation p = .49, the mean polychoric
correlation estimate was 0.51 (SD = 0.04), with mean RB of 3.21%. Thus, this result shows
that polychoric correlations remain only slightly biased when markedly different sets of
threshold values are applied to the two correlated y* variables generating the observed
ordinal variables.

Finally, to evaluate the effect of extremely nonnormal distributions, we generated data from
correlated y* variables defined by drastically nonnormal distributions (skewness = 5,
kurtosis = 50) and applied the same sets of thresholds as above to create five-category
ordinal variables (resulting in skewness = 1.68 and kurtosis = 7.01 for y; and y, when the

same set of thresholds was applied to both yj and y; and skewness = —7.86 and kurtosis =

64.63 for y, when different thresholds were applied to y;). We again generated 500
replications with N = 1,000 from each of these bivariate population distributions. With a true
correlation of p = .49, the mean polychoric correlation estimate was 0.65 (SD = 0.04), with

mean RB of 31.43% when thresholds were equal across yj and y5. When the set of

thresholds varied across y} and y, the mean polychoric correlation was 0.64 (SD = 0.09),
with mean RB of 32.21%. Thus, polychoric correlations do not appear to be robust to
extreme violations of the latent normality assumption, and this result does not seem to vary
substantially when different sets of thresholds are applied to y* variables.

In sum, consistent with Quiroga (1992), our empirical results suggest that polychoric
correlations provide unbiased estimates of the correlations among normal and moderately
nonnormal latent response variables. We did find evidence that severely nonnormal
distributions led to substantial distortions in the estimation of the polychoric correlation
structure and, given this distortion, we did not pursue the fitting of subsequent CFAs further.
However, the robustness of polychoric correlations to minor-to-moderate violations of
normality is a necessary but, quite importantly, not a sufficient condition to establish
whether CFA models for latent response variables can be accurately fitted with polychoric
correlation matrices. Thus, we next turn to the estimation of our CFA models using
polychoric correlations estimating the relationships among latent response variables of
varying distribution.

Estimation of CFA Models

Rates of improper solutions—The rates of improper and nonconverged solutions
obtained with full WLS estimation are given in Table 3. With N = 100, full WLS did not
produce any solutions for Model 4, the 20-indicator model (due to noninvertible weight
matrices). In general, the rates of improper solutions were greater in the two-category versus
five-category condition. For the two 10-indicator models (Models 2 and 3), two-category
data produced high rates of improper solutions with N = 100, whereas the rates were near
zero in the five-category condition. Also, nearly 100% of replications of Model 4 (the 20-
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indicator model) were improper in the two-category condition where N = 200, whereas the
corresponding rates in the five-category condition were only around 30%. Although the rates
of improper solution obtained with full WLS varied somewhat across different y*
distributions, this variation did not appear to be systematically associated with degree of
nonnormality in y*. At the two largest sample sizes (N =500 and N = 1,000), full WLS
estimation converged to proper solutions of all four models across 100% of replications.

In sum, there were modest differences evident in the convergence rates for the two-category
and five-category conditions. However, extensive analyses (not fully reported here) revealed
that the empirical results for the chi-square test statistics, parameter estimates, and standard
errors were nearly identical for these two conditions across all experimental conditions.
Given this equivalence, we present the findings related to the five-category condition to
retain scope and maximize focus.13

Chi-square test statistics—Tables 4-7 present findings for the chi-square test statistics
from Models 1 through 4, respectively. Recall that with full WLS, the model degrees of
freedom, and hence the expected value of the chi-square test statistic, is determined directly
from model specification, whereas with robust WLS, the model degrees of freedom is
estimated in part from characteristics of the data and varies across samples. Thus, although
we present the across-replication mean and standard deviation of chi-square statistics
obtained with full WLS, we do not present the across-replication mean and standard
deviation of chi-square values obtained with robust WLS because the expected value of
these statistics varies across replications within a given cell. For both methods of estimation,
we present the mean RB of the chi-square test statistics and the observed Type | error rate
(using a = .05) for each cell. With robust WLS, we calculated chi-square percentage bias for
each replication relative to its observed degrees of freedom and then computed the mean
percentages across replications to estimate RB.

Both the chi-square test statistics and their standard deviations tend to be positively biased
across all cells of the study, particularly with full WLS estimation. This bias increases as a
function of increasing model complexity. For example, full WLS chi-square statistics from
Model 1 have RB values ranging from 0.02% to 7.63% with N = 500, whereas full WLS chi-
square values from Model 4 show much greater inflation, as RB is approximately 65% with
N =500. Comparison of the findings for Model 2 with those for Model 3 reveals that the
bias in chi-square statistics is affected not only by the number of indicators for a model but
also by model complexity. Model 2 and Model 3 both have 10 indicators, but in Model 3 the
indicators measure two correlated factors, whereas the indicators for Model 2 measure a
single dimension. Because of this added model complexity, the chi-square statistics for
Model 3 are slightly more inflated than those for Model 2.

The effect of sample size on the inflation in chi-square test values varies substantially with
model specification. Within each of the four models, the chi-square RB decreases as sample
size increases, but this effect is more pronounced for larger models. In addition, there
appears to be some indication that the chi-square statistics are affected by nonnormality in
y*. Within any given level of model specification and sample size, chi-square statistics tend
to be slightly more inflated in the conditions of nonnormal y* distribution. Although there is
often substantial variability in the distribution of chi-square statistics across the four
nonnormal y* distributions, the pattern of differences does not reflect any consistent pattern
across the other study conditions. Importantly, the effect of nonnormality on chi-square

134 technical appendix containing all results from the two-category condition can be obtained from either David B. Flora or Patrick J.
Curran or can be directly downloaded from www.unc.edu/~curran or from http://dx.doi.org/10.1037/1082-989X.9.4.466.supp. This
appendix also includes example EQS code for data generation and Mplus code for model estimation.
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statistics is much less pronounced than are the effects of model specification and sample
size.

In general, the robust WLS chi-square statistics are inflated across most cells of the study,
although typically by less than 10% of their population values (except with N = 100, where
RB values tend to be between 10% and 20%). This positive bias is drastically smaller with
robust WLS estimation relative to full WLS estimation, especially for the larger models.
Furthermore, the influence of sample size on the chi-square test statistics appears to be much
greater with full WLS than it does with robust WLS. Figure 6 illustrates Type | error rates
for the model chi-square test by sample size for Models 1 and 3, as estimated with both full
WLS and robust WLS. The figure reflects that for small models (i.e., the five-indicator
Model 1), both methods of estimation lead to Type | error rates close to the nominal alpha
level of .05 across all four sample sizes. The figure also shows that for a more complex
model (i.e., Model 3, where 10 indicators represent two factors), full WLS estimation
produces vastly inflated Type | error rates with samples of size less than N = 1,000, whereas
the robust WLS method continues to produce Type | error rates close to the nominal alpha
level across all sample sizes. Finally, there does not appear to be any consistent tendency for
robust WLS chi-square values to be more biased under nonnormal y*.

Parameter estimates—Tables 8-11 present findings pertaining to the parameter
estimates (i.e., factor loadings and interfactor correlations) obtained for Models 1, 2, 3, and
4, respectively. On average, the parameters are overestimated across all conditions, and this
positive bias increases with increasing model size. However, the overall bias in parameter
estimation is notably smaller with robust WLS than it is with full WLS, especially for larger
models and smaller sample sizes. In general, the bias in parameter estimates obtained with
robust WLS is consistently trivial (i.e., less than 5%, with the exception of estimates of
factor correlations with N = 100 and 200, where RB is trivial to moderate, or less than 10%).
Even with full WLS estimation, the parameter overestimation is typically small, rarely
leading to parameter estimates greater than the corresponding population value by more
than .1 in the correlation metric. Whereas the overestimation of parameters with full WLS
increases as a function of increasing number of indicators for the model, there is no such
effect of model size on parameter estimation with robust WLS. Furthermore, parameter
overestimation with full WLS improves as a function of increasing sample size, particularly
with larger models. But with robust WLS, the effect of sample size on parameter estimation
is quite small.

Parameter estimates (both factor loadings and factor correlations) seem to be affected by
nonnormality in the y* variables, although this effect is small. Across all cells, the parameter
estimates are positively biased, even with normal y*, and this parameter overestimation
increases with greater nonnormality in y*. For example, using full WLS estimation, the
mean RB of factor loadings when Model 1 is estimated from normally distributed y*
variables is 2.57% with N = 100 and 0.29% with N = 1,000, yet when the same model is
estimated from y* variables with univariate skewness = 1.25 and univariate kurtosis = 3.75,
the mean RB of factor loadings is 4.86% with N = 100 and 2.29% with N = 1,000. Overall,
this small effect of y* nonnormality on parameter estimation was found with both full and
robust WLS estimation.

Standard errors—The conditions leading to greater bias in the standard errors were
nearly identical to those that led to greater bias in chi-square test statistics, thus we do not
present detailed results pertaining to standard error estimation.1# Across all study
conditions, the standard errors were consistently negatively biased relative to the standard
deviation of the relevant parameter sampling distribution obtained empirically across
replications. Specifically, standard errors were more biased as a function of increasing
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model size and decreasing sample size but were not systematically affected by y*
nonnormality. Under full WLS estimation at N = 1,000, the mean factor loading standard
error RB ranges from around —2.5% to —1% across replications of Model 1, from around
—9% to —5% across replications of Models 2 and 3, and from around —25% to —22% across
replications of Model 4. Although the robust WLS approach also frequently produced
negatively biased standard errors, these biases were much smaller than the standard error
bias produced with full WLS estimation. Using the robust WLS method with N = 1,000, the
mean factor loading standard error RB ranges from around —1% to 1% across replications of
Model 1, from around —3% to 1% across replications of Models 2 and 3, and from around
—3% to —1% across replications of Model 4.

Discussion

We used a comprehensive simulation study to empirically test our set of theoretically
generated research hypotheses pertaining to the performance of CFA for ordinal data with
polychoric correlations using both full WLS (as per Browne, 1984, and B. Muthén, 1983,
1984) and robust WLS (as per Muthén et al., 1997) estimation. The results of our study
provided support for each of our proposed hypotheses.

First, as predicted, we replicated Quiroga’s (1992) findings that polychoric correlations
among ordinal variables accurately estimated the bivariate relations among normally
distributed latent response variables and that modest violation of normality for latent
response variables of a degree that might be expected in applied research leads to only
slightly biased estimates of polychoric correlations. Both our results and Quiroga’s suggest
that this finding occurs regardless of whether the same set of threshold values is applied to
both latent response variables leading to the observed ordinal variables. A thorough
examination of the effects of differing thresholds and level of skewness across the two
variables on polychoric correlation estimates is beyond the scope of our study. However, we
note that Quiroga found that polychoric correlation estimates remained accurate when the
ordinal variables had differing thresholds or skewness of opposite sign. Specifically,
although increasing levels of nonnormality tended to produce increasingly positively biased
correlation estimates, these biases remained quite small and were typically less than .03 in
the correlation metric. Furthermore, we found that variability in polychoric correlations was
not affected by non-normality and that sample size had no effect on the mean polychoric
correlation estimates across cells.

These results likely occurred because nonnormality in the latent response variables, in
combination with the threshold values used to categorize the data, did not produce
contingency tables with low expected cell frequencies (see Brown & Bendetti, 1977; Olsson,
1979). Because our results indicated that the polychoric correlations accurately recovered
the correlations among the unobserved y* variables even under modest violation of the
normality assumption, we proceeded to examine the adequacy of fitting CFA models to
these correlation structures.

As we described earlier, it has been analytically demonstrated that when CFA models are
fitted using observed polychoric correlation matrices, full WLS estimation produces
asymptotically correct chi-square tests of model fit and parameter standard errors (e.g., B.
Muthén, 1983, 1984;B. O. Muthén & Satorra, 1995). However, in practice, the use of full
WLS is often problematic, especially when models with a large number of indicators are

14Complete results pertaining to standard error estimates are also included in the technical appendix that can be obtained from either
David B. Flora or Patrick J. Curran or downloaded from www.unc.edu/~curran or from
http://dx.doi.org/10.1037/1082-989X.9.4.466.supp.
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estimated with sample sizes typically encountered in social science research. In our study,
we found that when the 20-indicator model (Model 4) was estimated using N = 100, the
estimated asymptotic covariance matrix W was consistently nonpositive definite and could
not be inverted for any of the replications. Thus, not a single solution across all replications
was obtained in this situation using full WLS estimation. This finding is consistent with
Browne’s (1984) observation that this method of estimation “will tend to become infeasible”
as the number of variables approaches p = 20 (p. 73) and Jéreskog & Sérbom’s (1996)
recommendation that a minimum sample size be attained for estimation of W. When Model
4 was estimated with samples of size N = 200, W was usually invertible, but the full WLS
fitting function frequently failed to converge to a proper CFA solution.

However, the overall rates of nonconvergence and improper solutions obtained with full
WLS in the present study are less than those found in simulation studies applying full WLS
to continuously distributed data (e.g., Curran et al., 1996). Nonetheless, other studies
applying full WLS estimation to the analysis of polychoric correlations have found rates of
nonconvergence and improper solutions similar to those reported here: Neither Dolan (1994)
nor Potthast (1993) obtained nonpositive definite weight matrices or improper solutions for
any replications of their respective studies, which analyzed samples of size 200 and greater,
whereas Babakus et al. (1987) obtained high rates of non-convergence and improper
solutions only with samples of 100.

One advantage of the robust WLS method relative to full WLS is that sample solutions for
the CFA model can still be obtained with robust WLS estimation even when the weight
matrix is nonpositive definite. Thus, robust WLS estimation successfully obtained solutions
to Model 4 with N = 100, whereas full WLS did not. Furthermore, our findings show that the
likelihood of obtaining an improper solution or encountering convergence difficulty is near
zero with robust WLS estimation, even when the model is large and the sample is small.

Next, we hypothesized that full WLS estimation of CFA models for ordinal data using
polychoric correlations would lead to inflated test statistics and underestimated standard
errors. Our findings supported this prediction in that, on average, the chi-square test
statistics were positively biased and parameter standard errors were negatively biased in
nearly every cell of the study. The results also supported our more specific predictions that
these biases would increase as a function of decreasing sample size and increasing model
complexity. Specifically, the effect of sample size was larger for more complex models.
With the five-indicator model, chi-square statistics were substantially biased at N = 100,
whereas sample sizes of 200 and even 500 led to substantially biased chi-square statistics for
the two 10-indicator models. Sample sizes as large as N = 1,000 still led to heavily inflated
chi-square values for the 20-indicator model. However, with the two 10-indicator models,
chi-square values showed substantial inflation with sample sizes below 1,000. For the 20-
indicator model, full WLS estimation produced vastly inflated chi-square values across all
sample sizes, virtually guaranteeing rejection of a properly specified CFA model with N =
200 or N =500. Thus, our findings are similar to those of Dolan (1994), who concluded that
a sample size of 200 is not sufficient to estimate an eight-indicator model with full WLS
using polychoric correlations, and to those of Potthast (1993), who reported significant
problems when nine-parameter and larger models are estimated with a sample size as large
as 1,000.

The model test statistics produced with robust WLS also tended to be positively biased
relative to their expected values; however, these biases were substantially less than those
observed with the test statistics produced by full WLS. For the 10- and 20-indicator models,
the mean RB of the robust WLS test statistics was typically less than 10% for all cells with
sample size 200 or greater. Whereas full WLS estimation led to high Type | error rates for
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the 10- and 20-indicator models, robust WLS model rejection rates were much closer to the
nominal .05 level. Thus, our prediction that robust WLS estimation might produce test
statistics accurately distributed as chi-square, with degrees of freedom estimated from the
data as per B. Muthén et al. (1997), was supported across all four model specifications
estimated with samples of size 200 or greater.

Because of its reliance on the complete asymptotic variance—covariance matrix, it is not
surprising that full WLS estimation produced increasingly biased test statistics as a function
of decreasing sample size combined with increasing model size. In contrast, robust WLS
estimation is primarily a function of only the asymptotic variances, and not the covariances,
among the sample correlation estimates. Therefore, solutions obtained with robust WLS
estimation are not affected by inaccuracies in the full weight matrix nearly to the same
extent that full WLS solutions are affected.

Because polychoric correlations provide consistent estimates of the relationships among
latent response variables, we predicted that CFA parameter estimates would be unbiased.
Our findings suggest that, for normally distributed latent response variables, parameter
estimates obtained with full WLS estimation tended to be somewhat positively biased with
overestimation increasing as a function of increasing model size and decreasing sample size.
However, these biases were relatively small across all cells of the simulation: Even when the
20-indicator model was estimated with N = 200, estimates of the population factor loading .
70 were consistently less than .80, and estimates of the population factor correlation .30
were typically less than .40. Dolan (1994) found that parameters tended to be slightly
overestimated with N = 400 and less, whereas Potthast (1993) concluded that parameter
estimate bias was trivial across all cells of her simulation study, which only had two
conditions of sample size, N =500 and N = 1,000. Our results essentially replicated these
findings. With robust WLS estimation, parameter estimates were mostly unbiased with
normally distributed latent response variables.

As predicted, for both full WLS estimation and robust WLS estimation, we found that
increasing levels of nonnormality in latent response variables was associated with greater
positive bias in parameter estimates, echoing the tendency of polychoric correlations to be
positively biased when observed ordinal data derives from nonnormal latent response
variables. However, in that nonnormality in latent response distributions produces only
slightly biased polychoric correlations, this nonnormality introduces only slight bias in CFA
parameter estimates. As we noted earlier, because the polychoric correlations resulting from
extremely nonnormal continuous latent response distributions were substantially distorted,
we did not fit CFA models to these correlation structures. Theory would strongly predict that
the CFA parameter estimates and standard errors would be biased as a function of the
distorted correlation structure.

Finally, we found that nonnormality in latent response variables contributed to only a slight
increase in the positive bias of chi-square values obtained with full WLS estimation but not
with robust WLS estimation. Similarly, Babakus et al. (1987), Potthast (1993), and
Hutchinson and Olmos (1998) found that chi-square test statistics become more biased with
increasing nonnormality in the observed ordinal variables, although these researchers found
a greater effect of nonnormality than we did here.

However, it is crucial to keep in mind that in the current study, we created nonnormal
ordinal observed data by categorizing nonnormal continuous latent response variables. This
manipulation is fundamentally different from that implemented in these other studies in
which nonnormal ordinal observed data were created by varying the thresholds used to
categorize normal continuous latent response variables. As illustrated in Table 1, the

Psychol Methods. Author manuscript; available in PMC 2011 August 9.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Flora and Curran

Page 19

nonnormal y* variables from which we generated our sample data had more extreme levels
of skewness and kurtosis than the observed, ordinal variables from which polychoric
correlations and CFAs were estimated. Indeed, the levels of skewness and kurtosis in our
ordinal observed data were quite close to those of the normal distribution, despite that our
continuous latent response variables were much more nonnormal.

As such, observed ordinal distributions obtained in practice may often have more extreme
levels of skewness and kurtosis than those used here. Because prior studies (e.g., Babakus et
al., 1987; Hutchinson & Olmos, 1998; Potthast, 1993; Rigdon & Ferguson, 1991) have
effectively demonstrated the effects of increased skewness and kurtosis in observed ordinal
variables on the estimation of CFAs, we deemed a more thorough manipulation of y
variables to be beyond the scope of the current study. Rather, as stated above, our intent was
to evaluate the effect of violation of a crucial theoretical assumption for estimation of CFAs
using polychoaric correlations, namely the latent normality assumption for y*, and the
manipulations we chose for our simulations were explicitly targeted to do so. Thus,
combining our findings with those from previous studies, we were able to reach three
general conclusions about how distribution of y* and y affects the estimation of CFA models
from observed ordinal data.

First, estimation of CFA models is robust to moderate violation of the latent normality
assumption for y* variables, an assumption implicit in the statistical theory underpinning the
polychoric correlation, at least under conditions to those studied here. Because polychoric
correlations provide robust estimates of the true correlation even when different sets of
thresholds are applied to y* variables, it follows that estimation of CFA models is not
substantially affected according to whether or not threshold sets are constant across
indicators.

Second, to the extent that the observed ordinal variables have nonzero skewness and kurtosis
(e.g., as a result of threshold sets that lead to a dramatically different distribution shape fory
relative to a normal or moderately nonnormal y*), full WLS estimation is known to produce
biased chi-square test statistics and parameter standard error estimates. This latter finding
likely occurs because of an increased tendency for low expected cell frequencies in observed
contingency tables, especially in the context of small-to-moderate sample sizes (e.g., fewer
than 1,000; Potthast, 1993).1°

Third, when the population y* variables are of extreme nonnormality (e.g., skewness = 5,
kurtosis = 50), the likely result is that the observed ordinal variables themselves will also
have exaggerated levels of skewness and kurtosis, thus again leading to low expected
frequencies in observed contingency tables. With regard to consideration of the joint effects
of underlying nonnormality and varying thresholds across indicators, to the extent that these
factors jointly produce observed contingency tables with low (or zero) expected cell
frequencies, they are likely to lead to inaccurate polychoric correlations (as shown by Brown
& Bendetti, 1977), which in turn adversely affect estimation of CFA models.

5an anonymous reviewer made the astute observation that for many cells of the study, chi-square values were more biased in the
condition of y* skewness = 1.75 and kurtosis = 1.75 than in the condition of skewness = 1.75 and kurtosis = 3.75. This pattern was
likely the result of the particular combination of skewness and kurtosis in the observed ordinal variables rather than in the latent y*
variables. Specifically, Table 1 reflects that the former distributional condition had observed skewness of 0.486 in the context of
slightly negative kurtosis, whereas the latter distribution was slightly less skewed in the context of positive kurtosis. In the present
study, our aim was to illustrate robustness to the latent normality assumption rather than to investigate the effect of particular
combinations of skewness and kurtosis in the observed variables. This finding offers partial evidence that nonnormality in the latent y*
variables per se does not affect estimation to the same extent as the level of nonzero skewness and kurtosis in the observed ordinal

variables.
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Implications for Applied Research

There are several specific implications of our findings with respect to using these analytic
methods in practice. First, our findings suggest that the estimation of CFA models using
polychoric correlations is robust to the moderate levels of nonnormality in the latent
response variables that we considered here. Consistent with Quiroga (1992), our results
showed that polychoric correlations become only slightly inflated when the latent response
variables are moderately nonnormal. In turn, this bias in the correlation estimates contributes
to a modest overestimation of CFA model parameters and has little effect on chi-square test
statistics or parameter standard error estimates. Our findings support Pearson and Heron’s
(1913) argument that the latent normality assumption is merely a mathematical convenience
that has little practical importance when the latent response variables are moderately (but not
extremely) nonnormal.

Although our study demonstrates robustness to the latent normality assumption, it is
important to stress that our study does not offer a thorough assessment of the effects of
skewness and kurtosis of the observed ordinal variables. In practice, researchers may likely
observe ordinal distributions that are more skewed and kurtotic than those examined here.
We refer applied researchers to prior studies (e.g., Babakus et al., 1987; Hutchinson &
Olmos, 1998; Potthast, 1993; Rigdon & Ferguson, 1991) to further understand the effects of
high skewness and kurtosis among observed ordinal variables on estimation of CFAs using
polychoric correlations.

Consistent with previous studies for both continuous and ordinal data, our results
demonstrate that for CFA models of realistic size (e.g., with 10 or more indicators), the
desirable asymptotic properties of full WLS estimation are not observed with the types of
sample sizes typically encountered in applied psychological research, even with N = 1,000.
In the situation where a researcher wishes to fit a large model with N = 1,000 or fewer, our
findings imply that when proper CFA solutions are obtained with full WLS (which can be
quite rare at small-to-moderate sample sizes), these usually have inflated chi-square test
statistics and parameter estimates and negatively biased standard errors. In contrast, robust
WLS estimation nearly always produces a proper solution with test statistics, parameter
estimates, and standard errors that are much less vulnerable to the effects of increasing
model size and decreasing sample size. Furthermore, even for the situations in which full
WLS estimation performs well (i.e., with small models and large sample size), robust WLS
still produces less biased parameter estimates, standard errors, and test statistics. These
results support the recommendation that applied researchers closely consider robust WLS
estimation for CFAs with ordinal scales (and for SEMs more generally), particularly when
testing medium-to-large models with a moderate-to-small sample size.

Given this recommendation, a word of caution is warranted. Despite its apparent finite-
sample superiority to full WLS estimation, robust WLS estimation still leads to slightly
biased test statistics and standard errors when large models are estimated with small
samples. This inflation of the test statistic increases Type | error rates for the chi-square
goodness-of-fit test, thereby causing researchers to reject correctly specified models more
often than expected. It may be that researchers can supplement the chi-square goodness-of-
fit test with other fit indices often computed in applications of SEM to retain a model that
would otherwise be rejected on the basis of the chi-square goodness-of-fit test alone,
although we did not include such measures as formal outcomes of this study. Examples of
such fit indices include the comparative fit index (Bentler, 1990) and the root-mean-square
error of approximation (Steiger, 1990). However, because both of these indices are based in
part on the sample value of the fit function (i.e., Equation 8), these are likely to be biased to
some degree as well. There has been little research explicitly evaluating the performance of
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these statistics in the context of CFA with polychoric correlations, although Hutchinson and
Olmos (1998) reported promising initial findings for the comparative fit index.

Study Limitations and Directions for Future Research

We believe that the design of our study allows for empirically informed conclusions about
the practical usefulness of CFA using polychoric correlations across several model
specifications of increasing complexity, a broad range of sample sizes, several distributions
for the latent response variables, and two types of WLS model-fitting procedures. However,
this study shares the basic limitation of all Monte Carlo simulations; namely, it is possible
that the findings cannot be generalized beyond the specific conditions studied here.
Nonetheless, we believe that our experimental design and subsequent findings enable
stronger predictions to be made about the finite-sample performance of these methods across
a broad range of realistic conditions than have been previously available.

We defined our nonnormal underlying distributions by selecting levels of skewness and
kurtosis to represent what we propose to be minor-to-moderate departures from normality
that might be commonly encountered in behavioral research. It is important to reiterate that
we were not interested in exploring how severely nonnormal the underlying distributions
would need to be made for these estimators to fail. Instead, we feel that our results provide
strong empirical evidence that robust WLS performs exceptionally well across a variety of
commonly encountered conditions in applied research, and full WLS works almost as well
for larger sample sizes and for simpler models. In sum, we are not concluding that robust or
full WLS is unaffected by any degree of nonnormality of the latent response, but we do
conclude that these methods are well-behaved for a variety of nonnormal distributions that
might be expected in practice. Future research is needed to determine more accurately at
what point full or robust WLS estimation begins to break down under violations of latent
normality. Furthermore, we again remind readers that our results pertain most directly to
violation of the normality assumption for latent response variables, a crucial theoretical
assumption for the estimation of polychoric correlations. This is in distinct contrast to prior
research that has addressed the effects of varying skewness and kurtosis among observed
ordinal data in the context of normal latent response variables. We believe our findings
augment this prior work in important ways.

Given the scarcity of studies that have explicitly assessed the application of CFA using
polychoric correlations to realistic CFA models for ordinal variables, we felt that it was
important to focus exclusively on the estimation of properly specified models. However, in
practice, a given model specification is rarely exactly correct (see, e.g., Cudeck & Henly,
2003; MacCallum, 1995). Therefore, it is important that future research assess the ability of
CFA with polychoric correlations to test misspecified models. In particular, our study
provides promising results in support of the robust WLS method of B. Muthén et al. (1997)
when applied to correctly specified models. However, the performance of this method for
the estimation of misspecified models is still unknown. Because this method calculates test
statistics and standard errors in a manner similar to the Satorra and Bentler (1986, 1988)
method for continuous observed data, one might predict from the results of Curran et al.
(1996) that robust WLS would produce significantly underestimated chi-square statistics
under model misspecification, thus reducing power to reject a misspecified model. Again,
future research is needed to determine whether robust WLS maintains appropriate statistical
power to detect a misspecification under violations of distributional assumptions.

Finally, we considered homogeneous values for the factor loadings both within and across
models. This is of course a simplification, and it would be interesting to examine the more
realistic situation of heterogeneous factor loading values in future research. Although we did
not empirically examine the effects of varying the values of factor loadings here, we can
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draw on statistical theory to make some predictions about this issue. Namely, higher factor
loading values are reflective of greater factor determinacy, a condition that has many
benefits in model estimation and testing (see MacCallum, Widaman, Zhang, & Hong, 1999,
for an excellent review). Given our focus of interest, we would predict that larger factor
loadings would likely serve to convey information more saliently about violation of the
underlying normality distributions within the CFA. Similarly, weaker loadings would likely
dampen these effects. Taken together, we would expect that a heterogeneous set of factor
loading values would simultaneously exacerbate and weaken the effect of the violation of
assumptions, the specific effect of which would depend on many other experimental design
features. Thus, although future research is needed to better understand the influences of
heterogeneous loading structures, we do not believe that our use of homogenous loadings is
a limitation here.

In sum, we make the following conclusions based on our experimental design and associated
empirical findings. First, with the exception of a small number of modest differences in
accuracy of polychoric correlation estimation and model convergence under full WLS, there
were few to no differences found in any empirical results as a function of two-category
versus five-category ordinal distributions. Second, moderate nonnormality of latent response
distributions did not significantly effect the accuracy of estimation of polychoric
correlations, although severe nonnormality did. Third, full WLS rarely resulted in accurate
test statistics, parameter estimates, and standard errors under either normal or nonnormal
latent response distributions, and this accuracy only occurred at large sample sizes and for
less complex models. Fourth, robust WLS resulted in accurate test statistics, parameter
estimates and standard errors under both normal and nonnormal latent response distributions
across all sample sizes and model complexities studied here (although there was modest bias
found at the smallest sample size). Fifth, as we studied four variations of a CFA model here,
we would anticipate that these findings would generalize to SEMs of comparable
complexity. Finally, all of our conclusions are based on proper model specifications, and
future research must address the role of statistical power and the ability of full and robust
WLS to detect misspecifications when such misspecifications truly exist.
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Figure 1.
Model 1.
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Model 2.
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Figure 3.
Model 3.
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Type | error rates with nominal alpha level = .05 for chi-square test of model fit by sample
size for Model 1 (5 indicators of one factor) and Model 3 (10 indicators of two factors).

WLS = weighted least squares.
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Skewness and Kurtosis of Univariate Latent Response (y*) Distributions and Five-Category Ordinal (y)

Distributions

Table 1

y* distribution

y distribution

Condition Skewness  Kurtosis  Skewness  Kurtosis
Normal 0.00 0.00 0.02 —-0.00
Low skewness vs. low kurtosis 0.75 1.75 0.30 0.22
Low skewness vs. moderate kurtosis 0.75 3.75 0.22 0.60
Moderate skewness vs. low kurtosis 1.25 1.75 0.49 —-0.06
Moderate skewness vs. moderate kurtosis 1.25 3.75 0.47 0.39

Page 31

Note. Skewness and kurtosis for y* distribution are nominal population values. Skewness and kurtosis for y distribution are approximate population

values estimated from simulated samples of size N = 50,000.
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