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Abstract

Objectives—Many recent adhesives on the market exhibit reasonable clinical performance. 

Future innovations in adhesive materials should therefore seek out novel properties rather than 

simply modifying existing technologies. It is proposed that adhesive materials that are “bio-active” 

could contribute to better prognosis of restorative treatments.

Methods—This review examines the recent approaches used to achieve therapeutic polymers for 

dental adhesives by incorporating bio-active components. A strategy to maintain adhesive 

restorations is the focus of this paper.

Results—Major trials on therapeutic dental adhesives have looked at adding antibacterial 

activities or remineralization effects. Applications of antibacterial resin monomers based on 

quaternary ammonium compounds have received much research attention, and the loading of 

nano-sized bioactive particles or multiple ion-releasing glass fillers have been perceived as 

advantageous since they are not expected to influence the mechanical properties of the carrier 

polymer.

Significance—The therapeutic polymer approaches described here have the potential to provide 

clinical benefits. However, not many technological applications in this category have been 

successfully commercialized. Clinical evidence as well as further advancement of these 

technologies can be a driving force to make these new types of materials clinically available.
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1. Incorporation of QAC-based resin monomers

Quaternary ammonium compounds (QACs) are a group of cationic antimicrobials widely 

used for numerous industrial and pharmaceutical purposes [1]. In 1994, to develop non-

agent-releasing antibacterial dental resins, Imazato et al. combined alkylpyridinium, a type 

of QAC, with a methacrylate group, and successfully synthesized a novel dental resin 

monomer, 12-methacryloyloxydodecylpyridinium bromide (MDPB) [2] (Fig. 1). While the 

QAC group is responsible for the antibacterial activity of MDPB, the methacrylate group 

allows for copolymerization with other conventional monomers. Since antibacterial 

monomers are immobilized in the resin matrix and do not leach out after curing, 

incorporating these monomers imposes no negative influences on the mechanical properties 

of the carrier material [2]. Without releasing these active agents, QAC-based resinous 

materials can exhibit stable and long-term antibacterial effects [2].

1.1. Antibacterial effects

Experimental antibacterial adhesive systems were first prepared by incorporating MDPB 

into the primer of commercial self-etching adhesive Liner Bond 2 [3]. Since then, the 

antibacterial activity of this prototype has been investigated and confirmed by a number of 

in vitro studies. Based on the findings of this experimental material, Clearfil Protect Bond, 

employing a 5% MDPB-containing primer, was developed and commercialized (sold as 

Clearfil SE Protect in USA and Clearfil Mega Bond FA in Japan).

Before curing, the MDPB-containing primer can kill bacteria rapidly because of the 

bactericidal activity of unpolymerized MDPB. It can thereby act as a cavity disinfectant. 

When the primer containing MDPB was kept in direct contact with planktonic bacteria, all 

bacteria were killed within 30 s [3–5]. It is noteworthy that the Clearfil Protect Bond primer 

was able to penetrate a 500-μm-thick dentin block [6] and eradicate caries-related species 

inside the dentin [7]. In vivo studies using beagle dogs found that the MDPB-containing 

primer could also inactivate Streptococcus mutans in the cavity [8]. Since residual bacteria 

are one of the primary causes of secondary caries, the cavity-disinfecting effects of the 

MDPB-containing primer may improve the outcomes of restorative treatments of caries 

lesions.

After curing, MDPB-containing resins can inhibit the growth of bacteria that comes into 

contact with the material, thereby acting as a so-called “contact inhibitor” (Fig. 2). When S. 

mutans was incubated in contact with the cured primer/adhesive surface containing MDPB, 

the number of viable bacteria was significantly reduced [9,10]. However, materials 

containing MDPB only exhibited bacteriostatic, rather than bactericidal effects, against the 

contacting bacteria. Two possible reasons for the reduction in antibacterial activity after 

curing have been proposed; (i) the movement of the immobilized molecules is limited, and 

(ii) the density of the QAC group of MDPB exposed on the outer surface is not high enough 

to kill bacterial cells.

MDPB-containing adhesives have been suggested to be effective in root caries arrestment 

and dental pulp preservation. This is attributed to their lesion-disinfecting effects and 

bacteriostatic functionality on contact with bacteria after curing. In a S. mutans-induced 
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artificial root caries model, a MDPB-containing adhesive completely prevents lesion 

progress [11]. As for pulp preservation, it has been confirmed using beagle dog models that 

the antibacterial primer containing MDPB can kill bacteria in the cavity, thus maintaining 

pulp vitality and primary odontoblastic function in infected, non-exposed and exposed 

cavities [8,12].

Besides MDPB, several other QAC monomers have been developed that can be utilized in 

resinous dental materials. Methacryloxylethyl cetyl dimethyl ammonium chloride (DMAE-

CB, Fig. 3), synthesized by Chen’s group, provided a commercial etch and rinse adhesive 

with stable antibacterial activities that does not damage the bonding capacity [13,14]. In 

recent years, significant efforts have been devoted to developing QAC monomers with 

improved properties. For instance, QAC monomers with two methacrylate groups have been 

synthesized to enhance the polymerization capacity [15–17] (Fig. 4). Antibacterial 

monomers with radio-opacity have also been developed using iodine as a counter ion 

[18,19] (Fig. 5).

1.2. Inhibitory effects against matrix metalloproteinases

Although modern adhesives can achieve satisfying immediate bonding to dentin, they 

demonstrate a loss of bond strength over time. Enzymatic degradation of the collagen matrix 

by host-derived matrix metalloproteinases (MMPs) plays a significant role in the destruction 

of the bonded interface [20]. One strategy to improve the durability of resin–dentin bonds is 

to use inhibitors that inactivate MMPs at the bonded interface [21]. Chlorhexidine has been 

found to be a non-specific MMPs inhibitor [22], and applying this agent to adhesives has 

been reported to be beneficial for the preservation of the resin–dentin bonds in vitro [23–25]. 

Similar to chlorhexidine, a QAC disinfectant of benzalkonium chloride effectively inhibited 

both soluble recombinant MMPs and matrix-bound dentin MMPs [26]. Tezvergil-Mutluay et 

al. speculated that QAC monomers may inhibit MMP activity. Using both soluble rhMMP-9 

and matrix-bound endogenous MMPs, they found that QAC monomers, including MDPB, 

exhibited MMP inhibition behavior that was comparable to that of chlorhexidine [27]. 

Noticeably, MDPB at 5%, which is the concentration utilized for the primer of commercial 

adhesive Clearfil Protect Bond, achieved 89% inhibition of soluble rhMMP-9 and 

approximately 90% inhibition of matrix-bound MMPs. Compared with chlorhexidine or 

benzalkonium chloride, which may leach out from bonded interfaces over time, 

polymerizable MMP-inhibitors are advantageous as they can be retained in the hybrid layer 

for years by copolymerization. Several investigations into bond durability, including in vivo 

studies, revealed that the MDPB-containing adhesive produced a more durable interface 

than conventional adhesives [28,29]. Such improved durability achieved by MDPB-

containing adhesives may be partially explained by the inhibitory effects of MDPB on 

MMPs.

2. Incorporation of nanoparticles

2.1. Antibacterial effects of silver nanoparticles

The antibacterial, antifungal, and antiviral actions of silver ions have been extensively 

investigated. Silver ions have been considered for applications as an antibacterial component 
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in resinous dental materials. However, polymers filled with silver ions typically release a 

burst of ions and lose their antibacterial activity within a short period [30]. Compared with 

free silver ions, reduced silver nanoparticles incorporated into a polymeric matrix provide a 

large reservoir of silver ions that can be released in a more controlled manner at a steady 

rate, allowing for long-term antibacterial effects [31]. The direct incorporation of silver 

nanoparticles into a polymer matrix is a common strategy for preparing antibacterial 

resinous materials [32]. However, silver nanoparticles are difficult to disperse, as nano-sized 

particles tend to aggregate. In 2011, a new technique for preparing dental polymers with 

evenly dispersed silver nanoparticles was described using coupling photo-initiated free 

radical polymerization of dimethacrylates with in situ silver ion reduction [33]. The 

experimental composites containing 0.08% of silver nanoparticles exhibited a 40% reduction 

in bacterial coverage [33].

As opposed to QAC monomer-containing resins whose bacteriostatic effects depend on the 

direct contact of bacteria with the material surface, resinous materials loaded with silver 

nanoparticles can inhibit bacteria on its surface as well as bacteria suspended in the culture 

medium away from the surface [34]. Therefore, QAC monomers and silver nanoparticles 

could show complimentary behavior for inhibiting bacteria. Experimental adhesives 

containing both QAC monomers and silver nanoparticles exhibited significantly enhanced 

antibacterial potency before and after curing compared with adhesives that used either agent 

alone [35–40].

2.2. Remineralization by calcium phosphate nanoparticles

To develop resinous materials with remineralization capabilities, calcium and phosphate ion-

releasing fillers can be incorporated. The release and precipitation of calcium and phosphate 

can enhance the formation of hydroxyapatite (Ca10(PO4)6(OH)2), which is the structural 

prototype for the major mineral component of teeth. In vitro studies revealed that 

methacrylate-based composites containing calcium phosphate fillers could release calcium 

and phosphate ions to supersaturated levels for apatite precipitation, and thus could 

effectively remineralize tooth lesions [41–44]. However, calcium phosphates containing 

resinous materials have the drawback of low mechanical strength. To develop experimental 

composites with high Ca and PO4 release rates and with acceptable mechanical properties, 

Xu et al. combined nano-sized dicalcium phosphate anhydrous (DCPA) with silica-fused 

whiskers as co-fillers [45–48]. As the nanoparticles have a high surface area, high levels of 

Ca and PO4 can be released with a relatively small amount of DCPA filler. This leaves room 

in the resin for a significant amount of silica-fused whiskers that can reinforce the 

mechanical properties. However, the silica-fused whisker-reinforced nanocomposite is 

relatively opaque with a whitish color owing to a refractive index mismatch between the 

whiskers and resin, and cannot be light-cured [49].

Amorphous calcium phosphate nanoparticles (NACP) were synthesized and combined with 

barium boroaluminosilicate glass particles, a typical dental glass filler similar to those in 

hybrid composites, to yield light-curable, weight-bearing, Ca and PO4-releasing composites 

[50,51]. One advantage of the composites containing calcium phosphate fillers is that they 

are “smart” and could release relatively high amounts of Ca and PO4 when the pH is 
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reduced from neutral to cariogenic of pH 4.0 [50]. Furthermore, these materials can rapidly 

neutralize the acidic medium, increasing the pH from 4.0 to 5.69 within 10 min [52]. The 

“smart” release of Ca and PO4 as well as the neutralizing effects are promising material 

attributes to combat acid attack-induced mineral loss. A recent in vitro study using a 30-day 

demineralization/remineralization cyclic regimen found that NACP nano-composites could 

effectively remineralize the demineralized human enamel. These remineralization effects 

were 4-fold that of a commercial fluoride-releasing composite [53].

Based on these successful composites, Xu et al. conducted an approach to combine 

amorphous calcium phosphate with antibacterial components (QAC monomer or silver 

nanoparticles) (Fig. 6), and achieved a novel dental bonding agent with remineralization 

capacity and long-lasting antibacterial activity [54–57]. Such new materials having both 

remineralization and antibacterial properties may be of great benefit to preserve durable 

bonding interfaces and fight against secondary caries.

3. Application of a multiple ion-releasing glass filler

Pioneering work by Wilson and Kent suggests that the release of fluoride from glass-

ionomer cements relies on the siliceous hydrogel layers on the surfaces of the glass particles. 

These layers result from the acid-base reaction between the ionleachable glass fillers and 

polyalkenoic acids [58]. Based on this theory, a revolutionary pre-reacted glass ionomer 

(PRG) filler, that are prepared by the acid-base reaction of fluoroboroaluminosilicate glass 

with polyalkenoic acid and added to resinous materials, has been introduced. Between the 

two types of fillers prepared, a full reaction type (F-PRG) and a surface reaction type (S-

PRG) [59], the latter was found to be more useful because it is fabricated by the reaction 

limited to the glass surface and the mechanical properties of the core glass are not affected 

(Fig. 7). A ligand exchange mechanism within the pre-reacted hydrogel endows S-PRG 

fillers with the ability to release and recharge fluoride ions [60]. In addition, S-PRG fillers 

release multiple ions such as Sr2+, Na+, BO3
3−, Al3+, and SiO3

2− at high concentrations [61] 

(Fig. 8). Several unique therapeutic effects are expected for resinous materials containing S-

PRG fillers owing to the multiple ion-releasing capacity.

3.1. Promotion of calcification and remineralization

S-PRG fillers act in a quasi-intelligent way such that their release of fluoride is acidity-

dependent. Their protective effects are then proportional to the threat being encountered 

[60]. The S-PRG filler can also achieve a sustained fluoride release owing to its fluoride 

recharging capacity [60,62–64]. Along with the release of multiple ions, S-PRG filler can 

modulate the pH of the surrounding medium, shifting the pH to neutral and weak alkaline 

regions [61]. Because of the released fluoride and silica, the eluate of resins filled with S-

PRG fillers remarkably enhances the formation of apatite on phosvitinimmobilized agarose 

beads in the presence of a mineralizing solution [65]. It is well known that fluoride can 

improve the acid resistance of enamel and dentin by promoting the conversion of 

hydroxyapatite to fluoroapatite.

Sr released from S-PRG fillers may also enhance the acid resistance of teeth by converting 

hydroxyapatite to strontiumapatite [66,67]. In vitro studies have demonstrated that ions 
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released from the S-PRG filler-containing adhesive [68] or endodontic sealer [69] can be 

taken up by the enamel and dentin adjacent to the material, and the corresponding areas 

showed decreased demineralization following acid exposure. Similar results have also been 

reported for other S-PRG filler-containing materials, including proprietary materials such as 

orthodontic adhesive [70], fissure sealants [71], coating material [72], resinous vanish [73] 

and denture base resin [74].

3.2. Antibacterial effects/anti-plaque effects

There is increasing interest in the biological functions of the multiple ions released from S-

PRG fillers, including the inhibitory effects on bacterial viability or activity. It was found 

that the S-PRG filler-containing resins, compared with conventional composites, 

significantly reduced the growth of S. mutans on their surfaces (unpublished data from 

Imazato’s group). It was also reported that eluate from the S-PRG filler can suppress the 

adherence of S. mutans [75], and S-PRG filler-containing proprietary composites (Beautifil 

II) inhibited their adherence in the presence of saliva [76]. Further in vivo studies 

demonstrated that, after 8 h of intraoral exposure, a considerably lower quantity of dental 

plaque accumulated on the surface of Beautifil II [76]. Although the exact mechanism for 

the anti-plaque effects of the S-PRG filler is unknown, the release of multiple ions is 

believed to be related to this phenomenon.

Besides anti-plaque effects, S-PRG filler-containing proprietary resinous material inhibited 

bacteria-induced pH drop on the material surface, possibly due to the release of multiple 

ions [72]. Eluate from the S-PRG fillers exhibited inhibiting effects on the protease and 

gelatinase activities of Porphyromonas gingivalis. It also prevented the coaggregation 

between P. gingivalis and Fusobacterium nucleatum [75], indicating that these fillers may 

also be effective in combating periodontitis.

4. Addition of growth factors

Recently, in addition to conventional restorative treatments, resin adhesives have been 

attempted to be used for the adhesion of fractured roots, root-end filling, or sealing of 

perforations because they can provide a hermetic seal that prevents re-infections. In 

particular, several clinical studies reported the successful reconstruction of fractured roots 

with 4-META/MMA-based adhesive resin [77–79], which showed good bonding ability in a 

wet environment and high compatibility with osteoblasts or mesenchymal precursor cells 

[80,81]. However, none of the present adhesives available on the market promote tissue 

healing. Successful results cannot be expected when large bone defects exist adjacent to the 

sites that are repaired with adhesives.

To increase the success rate of these new treatment options and expand the use of resin 

adhesives, it is valuable to add the capacity to promote tissue regeneration. An effective, 

simple way to provide tissue regeneration abilities is to release growth factors from the 

adhesives. A number of studies on the local delivery of growth factors from dental implants 

to enhance osseointegration are available. For these studies, the use of fibroblast growth 

factor-2 (FGF-2) has been well documented. Utilization of polymer-based particle as a 

carrier to deliver FGF-2, such as poly(lactide-coglycolide) microspheres reported for 
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titanium implant [82], may be applied for resin-based restoratives. Few trials have been 

reported regarding the delivery of growth factors from dental resins. Attempts to fabricate 

FGF-2-releasing adhesives using drug carrier polymers are currently under investigation.

5. Concluding remarks

The approaches to achieve therapeutic polymers described here have the potential to 

contribute to successful restorative treatments. However, several points remain to be 

clarified to make these new types of materials clinically available. Researchers must show 

quantitative evidence that they have achieved appropriate kinetic control such that the 

bioactive elements will provide real benefits under in vivo conditions. For example, it is 

important to prove that the bioactive components are delivered at a rate and concentration to 

exhibit therapeutic effects regardless of shifts in environmental condition such as ionic 

concentrations, pH, or temperature. There also have been concerns about the potential 

toxicity of newly synthesized compounds. While the biocompatibility of the QAC-based 

monomer MDPB incorporated into the commercially available adhesive has been well 

documented [83], information to warrant the safety of other new compounds for clinical use 

needs to be collected. Since much attention has been paid on toxic effects of nanoparticles 

including those of silver [84,85] rigorous investigations on the risk of adverse health effects 

by usage of nanoparticles are required. Obviously, clinical evidence can be a key for 

commercialization of new technologies in this category.
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Fig. 1. 
QAC-based antibacterial monomer MDPB.
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Fig. 2. 
Antimicrobial immobilized in a polymer network by copolymerization of the antibacterial 

monomer with conventional methacrylate monomers; contact inhibition of bacteria.
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Fig. 3. 
QAC-based monomer DMAE-CB.
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Fig. 4. 
QAC-based monomers with two polymerizable groups.
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Fig. 5. 
QAC monomer with iodine as a counter ion.

Imazato et al. Page 17

Dent Mater. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 6. 
TEM image of amorphous calcium phosphate (NACP) and silver nanoparticles (NAg) 

incorporated in the adhesive resin.
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Fig. 7. 
Structure of the surface pre-reacted glass-ionomer (S-PRG) filler.
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Fig. 8. 
Concentration of ions released from conventional fluoroaluminosilicate glass of glass-

ionomer cement (GIC filler) or S-PRG filler into distilled water after 24 h of immersion. Al, 

B, Na, P, Si, and Sr were detected by inductively coupled plasma atomic emission 

spectroscopy and F− was measured using a fluoride electrode.
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