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Abstract

Significance: NOX2 is important for host defense, and yet is implicated in a large number of diseases in which
inflammation plays a role in pathogenesis. These include acute and chronic lung inflammatory diseases, stroke,
traumatic brain injury, and neurodegenerative diseases, including Alzheimer’s and Parkinson’s Diseases. Re-
cent Advances: Recent drug development programs have targeted several NOX isoforms that are implicated in
a variety of diseases. The focus has been primarily on NOX4 and NOX1 rather than on NOX2, due, in part, to
concerns about possible immunosuppressive side effects. Nevertheless, NOX2 clearly contributes to the
pathogenesis of many inflammatory diseases, and its inhibition is predicted to provide a novel therapeutic
approach. Critical Issues: Possible side effects that might arise from targeting NOX2 are discussed, including
the possibility that such inhibition will contribute to increased infections and/or autoimmune disorders. The
state of the field with regard to existing NOX2 inhibitors and targeted development of novel inhibitors is also
summarized. Future Directions: NOX2 inhibitors show particular promise for the treatment of inflammatory
diseases, both acute and chronic. Theoretical side effects include pro-inflammatory and autoimmune compli-
cations and should be considered in any therapeutic program, but in our opinion, available data do not indicate
that they are sufficiently likely to eliminate NOX2 as a drug target, particularly when weighed against the
seriousness of many NOX2-related indications. Model studies demonstrating efficacy with minimal side effects
are needed to encourage future development of NOX2 inhibitors as therapeutic agents. Antioxid. Redox Signal.
23, 375–405.

General Roles of Reactive Oxygen Species
and Nicotinamide Adenine Dinucleotide
Phosphate, Reduced Form Oxidase Enzymes

Reactive oxygen species (ROS) are produced by the
partial reduction of oxygen to form superoxide (O2

� - ),
hydrogen peroxide (H2O2), and hydroxyl radical (�OH). Other
reactive molecules are also formed both enzymatically and
non-enzymatically through the reaction of ROS with other
species: peroxynitrite (ONOO - ) is produced by the sponta-
neous reaction of O2

� - with nitric oxide (NO), and hypo-
chlorous acid (HOCl) is formed by the myeloperoxidase-
catalyzed reaction of H2O2 with chloride. While O2

� - is
weakly reactive and H2O2 is a moderately potent oxidant,

ONOO- , HOCl, and �OH are highly reactive and produce
molecular damage in DNA, protein, and lipids, resulting, for
example, in DNA strand breaks, chlorination of protein tyro-
sine residues, and loss of membrane integrity (79, 80).

Phagocytic cells have capitalized on this chemical reac-
tivity, generating microbicidal ROS within the phagosome as
a part of innate immune mechanisms. In addition to their
microbicidal functions, ROS, especially H2O2, act as sig-
naling molecules, impacting the function of signal trans-
duction proteins, ion channels, and transcription factors (91,
327, 328). ROS are, thus, increasingly recognized as central
players in a range of normal physiological processes. Early
studies showed that H2O2 is produced under normal physi-
ological conditions, for example, in response to the growth
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factors platelet-derived growth factor (PDGF) (291) and epi-
dermal growth factor (12), and that it is overproduced in
transformed cells expressing oncogenically activated Ras
(115). Signaling pathways impacted by ROS include ERK1/2,
JNK, nuclear factor-kappa B (NF-kappa B), focal adhesion
kinase, AP-1, Akt, Ras, Rac, JAK-STAT, and many others (31).

The best characterized molecular mechanism by which
ROS regulate signaling involves oxidation of low pKa
cysteine residues that exist as thiolate anions (Cys-S - ) at
physiological pH, rendering them susceptible to oxidation by
H2O2 (237, 328). This oxidation may occur directly or may
require an additional protein such as a thioredoxin (312).
Redox-sensitive thiols are often located in specialized protein
environments such as active sites, where their oxidation typi-
cally inhibits enzymatic activity. Examples of such ‘‘oxidant-
sensor’’ proteins include protein phosphatases (e.g., protein
tyrosine phosphatases [PTPs], low-molecular-weight protein
tyrosine phosphatases, and MAP kinase phosphatases), the
lipid phosphatase PTEN, and regulatory enzymes of ubiquitin
and ubiquitin-like proteins such as SUMO and Nedd8 (237,
250, 312). As one example, PTP is oxidized in response to
growth factor activation of receptor tyrosine kinases, thus si-
multaneously triggering protein phosphorylation and inhibit-
ing the means of removing tyrosine phosphates from target
proteins. The net result is to markedly increase tyrosine
phosphate levels over those seen in the absence of oxidative
mechanisms (12). Physiological stimuli that increase H2O2

may also result in the oxidation of protein thiols that can be
reversed by, for example, thioredoxin or glutathione. This
serves as an ‘‘off/on’’ switch analogous to protein phosphor-
ylation/dephosphorylation and enables rapid regulation of
downstream signaling pathways.

In addition to their normal signaling roles, ROS are rec-
ognized as a double-edged sword, implicated by virtue of
their reactivity and pro-inflammatory properties in the path-
ogenesis of a long list of diseases, many of them inflamma-
tory and/or chronic in nature (17, 154). Due to this
association, antioxidant therapy has been investigated both in
animals and in a large number of human clinical trials. Un-
fortunately, this approach has been largely unsuccessful,
probably as a result of the common use of vitamins and/or
dietary compounds that are generally very weak antioxidants
in vivo. In addition, efficient cellular enzymatic antioxidant
systems (superoxide dismutase [SOD], catalase, peroxidases,
etc.) probably render the added effect of exogenous antioxi-
dants rather small (156). The disappointing results with an-
tioxidant therapy clinical trials have turned attention in recent
years to eliminating the production of ROS at its source.

Cellular sources of ROS

While cellular ROS have classically been described as
arising from a variety of redox-active enzymes (xanthine
oxidase, cyclooxygenases, lipoxygenases, myeloperoxidase,
heme oxygenase, monoamine oxidases, aldehyde oxidase,
nitric oxide synthases [NOS], and cytochrome P450) as well
as from the mitochondrial respiratory chain, ROS production
from these sources is largely an ‘‘accidental’’ byproduct of
catalysis involving redox-active coenzymes that have a low
but finite reactivity with molecular oxygen (225). Generally,
these sources generate low amounts of ROS, but levels can
increase under pathological conditions, as occurs, for

example, in genetically mutated mitochondria (318) or in
NOS that has been exposed to oxidants (the so-called ‘‘kin-
dling reaction’’) (157). NOX enzymes, on the other hand,
efficiently produce O2

� - or H2O2 as their primary catalytic
function, thus earning the status of ‘‘professional’’ ROS-
generating enzymes, and cellular mechanisms are in place to
tightly regulate NOX activity (e.g., phosphorylation, tran-
scription) for cells to regulate their ROS levels both acutely
and chronically (17, 156).

NOX enzymes are a family of NADPH-dependent oxygen
reductases that are widely expressed in eukaryotes from
plants to fungi to vertebrates. The catalytic NOX or dual
oxidase (DUOX) subunit, represented in humans by seven
paralogous genes (NOX1-5 and DUOX1 and 2), contains
both flavin adenine dinucleotide (FAD) and two heme
groups. The FAD, bound within a cytoplasm-facing flavo-
protein dehydrogenase domain, oxidizes NADPH in a two-
electron hydride transfer reaction; single electrons then pass
in sequence from the FAD through the two non-identical
heme groups located within a transmembrane domain, and,
finally, to oxygen on the other side of the membrane, to form
O2
� - (Fig. 1). In some cases (e.g., NOX4, DUOX1 and 2), the

major detectable product is H2O2 rather than O2
� - (294).

Except perhaps for NOX5, NOX family members require in-
teractions with other membrane-associated partner proteins

FIG. 1. Schematic diagram of NOX2 and NOX2 regu-
latory subunits, along with sites of inhibitor action.
NOX2 and p22phox are shown in the membrane, along with
NOX2 regulating cytosolic subunits. PRD refers to the
proline-rich domain of p22phox. Shown also is the pathway
of electron flow from FAD through the two heme groups
(represented by red squares). FAD, flavin adenine dinucle-
otide; NADPH, nicotinamide adenine dinucleotide phos-
phate, reduced form; NOX, NADPH oxidase. To see this
illustration in color, the reader is referred to the web version
of this article at www.liebertpub.com/ars
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for stability and/or localization; these include p22phox for
NOX1–4 (9, 62, 134, 178, 308), and DUOXA1 and DUOXA2
for DUOX1 and DUOX2, respectively (90, 188). NOX1–3
require assembly with regulatory subunits for full catalytic
activity, while NOX4 is constitutively active.

While NOX2 and its regulation were discovered and
characterized first, the recognition of NOX enzymes as a
family of ROS-generators has focused a great deal of atten-
tion on the other members of the family, especially with
regard to their biochemistry, physiological, and pathophysi-
ological roles. NOX4, for example, is frequently associated
with fibrotic diseases, and has attracted a great deal of at-
tention as a target for pharmaceutical development. Never-
theless, it has become apparent (vide infra) in recent years
that the over-activity of NOX2 is also associated with a large
number of diseases, particularly those with an inflammatory
component. Here, we focus on NOX2 as a target for drug
development, discussing its normal physiology and patho-
biology, as well as possible complications that might arise
from drug targeting of this enzyme.

Overview of the NOX2 enzyme

NOX2 and its regulatory partner proteins have been ex-
tensively characterized since their molecular cloning in the
1990s (4, 142, 163, 212, 243, 300, 317, 324). The catalyti-
cally dormant NOX2 in its membrane complex with p22phox
becomes activated as a result of assembly with cytosolic
regulatory partner proteins p40phox, p47phox, p67phox, and
Rac1/2, a process triggered by phosphorylation of p47phox
and probably other components, and by guanine nucleotide
exchange on Rac. The structure and function of NOX en-
zymes has been extensively reviewed (17, 141, 153, 155,
287). For the present purpose, we point out that the presence
of multiple specialized domains that mediate protein–protein
interactions during the assembly process provide, in addition
to the NADPH-binding site on NOX2, a number of candidate
binding sites through which inhibitors might target the NOX2
system by disrupting assembly.

Physiological roles of NOX2

The known or proposed physiological roles and mecha-
nisms of action of NOX2 are summarized in Table 1, as
prologue to considering the possible complicating effects of
drugs that target the NOX2 enzyme system. While levels of
NOX2 are highest in phagocytes, NOX2 mRNA and/or
protein have been detected at low levels in a large number of
other tissues [(17), and Table 1]. In many cases, the co-
expression and possible redundant function of other NOX
isoforms complicates the interpretation of specific roles for
NOX2. Likewise, the use of non-selective NOX inhibitors as
tools (see next) also complicates interpretations. The use of
genetic methods, including RNA interference and gene ab-
lation, can be considered to be more definitive. Table 1
should, therefore, be considered in this context.

Professional phagocytes

Neutrophils and macrophages. NOX2 functions in neu-
trophils and macrophages in host defense against invading
microorganisms (Table 1). Pursuing a chemical trail of mi-
crobial products (e.g., formylated peptides) and host-derived

inflammatory factors (cytokines, lipid mediators), phago-
cytes locate and engulf invading microbes into phagosomes,
in which a high concentration of NOX2-derived O2

� - is
generated. SODs form H2O2, which reacts with chloride in a
myeloperoxidase-catalyzed reaction and forms the highly
microbicidal HOCl (17, 152, 194, 195, 265). The central role
of the NOX2 system in host defense is demonstrated by the
inherited condition chronic granulomatous disease (CGD) in
which phagocytes genetically defective in NOX2 or one of its
interacting regulatory subunits fail to kill ingested microor-
ganisms, despite normal phagocytosis, resulting in frequent
and chronic infections in affected individuals. Definitive
evidence for the microbicidal role of ROS was provided by
experiments which showed that exogenous H2O2 could re-
store the ability of defective neutrophils from CGD neutro-
phils to kill microorganisms (87). Neutrophils from mice in
which NOX2 or one of its regulating subunits is genetically
deleted show identical microbicidal defects (119, 223).

Similar to neutrophils, some populations of monocytes
and macrophages respond to chemotactic signals to gather at
sites of inflammation. Monocytes take up residence in specific
tissues, becoming macrophages that are specialized for
their role as ‘‘first responders’’ within the local environment.
Macrophages can be activated both by pathogens themselves
and by damage-associated molecular patterns (58, 278), to
which they respond by phagocytosis of the offending material,
producing cytokines and other signaling molecules, and pre-
senting antigens. Macrophages express relatively high levels
of NOX2 components, although they are also reported to ex-
press other NOX isoforms (17, 160, 309). The NOX2-derived
respiratory burst in microbicidal killing in macrophages is
similar to, but less robust than, that of neutrophils (17, 58, 278).

In addition to direct damage to microbial molecules,
NOX2-derived ROS promote the formation of neutrophil
extracellular traps (NETs), which also participate in innate
immunity (28). NETs are composed of chromatin strands to
which antimicrobial proteins are attached. Neutrophils re-
lease NETS in novel cell-death pathways that are triggered by
various stimuli; the NET response to some stimuli depends on
ROS-initiated breakdown of the phagocyte nuclear envelope
(82, 133, 152). Neutrophils from CGD patients and mouse
NOX2 knockouts fail to make NETs under stimulation con-
ditions that usually promote NET formation, and NET for-
mation in neutrophils from various mouse strains correlates
with the amount of ROS produced (74, 82). It is important to
note that certain stimuli promote NETs without ROS in-
volvement (35, 41) and that the role of NOX2-derived ROS in
NETS in vivo is unclear (196, 211).

NOX2-mediated ROS generation in phagocytes, especially
macrophages, leads to the elaboration of immune mediators
from various cell types, including phagocytes: inflammatory
cytokines (e.g., interleukin [IL]-1, IL-6 and tumor necrosis
factor [TNF]-alpha), phagocyte-attracting chemokines (e.g.,
CXCL8, CCL3, and CCL4), and bioactive lipids (e.g., pros-
taglandins, leukotrienes, etc.) (58, 278). Such mediators
are important in both innate and adaptive immune responses,
recruiting inflammatory cells to sites of infection or inflam-
mation. In macrophages of the vessel wall, low-density lipo-
protein triggered TLR receptors to activate NOX2-dependent
ROS generation, leading to the production of pro-inflammatory
cytokines (13, 234) that are implicated in the development of
atherosclerotic plaques; macrophages from CGD patients
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showed greatly reduced levels of pro-inflammatory cytokines
(13, 234) and increased anti-inflammatory cytokine IL-10. To
our knowledge, a decreased propensity to develop atheroscle-
rosis has not been evaluated in CGD patients, but a protective
effect has been noted in NOX2 gene-deleted mice (125).

Paradoxically, macrophages also participate in the resolution
of inflammation by phagocytosis of apoptotic neutrophils, and
in the regulation of the adaptive immune response via the
elaboration of anti-inflammatory mediators. NOX2-deficient
neutrophils and macrophages produce significantly lower levels

Table 1. Physiological Roles of NOX2

NOX2 tissue
expression Proposed function Proposed mechanism

Evidence for
NOX2 role References

Neutrophil Host defense ROS damage to macromolecules CGD, NOX2 KO
mouse

(87)

ROS-dependent NET generation CGD, NOX2 KO
mouse

(74, 82)

ROS signaling NOX2 KO mouse (105, 149)

Macrophage Host defense ROS damage to macromolecules CGD (259)
ROS-dependent cytokine

production
CGD (13, 234)

ROS control of antigen
processing

NOX2 KO mouse (248)

Resolution of inflammation ROS-dependent mediator
production

CGD (76)

T-cell activation and
proliferation

ROS oxidation of T-cell surface
Cys thiols

p47phox mutant rat (85)

Dendritic cells Host defense ROS control of antigen
processing

Ebselen; NOX2 KO
mouse

(180, 256)

Microglial cells Host defense ROS damage to macromolecules NOX2 KO mouse (64)

ROS-regulated cytokine
production, signaling, and
transcription

NOX2 KO mouse (136, 214)

Endothelial cells Cell proliferation and survival ROS-regulated transcription NOX2 siRNA (78, 221)
Endothelial permeability ROS-regulated signaling and

transcription
p47phox siRNA (164)

Vascular tone O2
� - depletion of NO NOX2 KO mouse (89)

Vascular smooth
muscle

Vascular tone, growth and
development

ROS-regulated signaling and
transcription

NOX2 siRNA (29)

Skeletal muscle Contractility ROS regulation of Ca2 +

channels, transcription
NOX2 KO mouse (168)

Heart muscle Contractility ROS regulation of Ca2 +

channels, transcription
NOX2 KO mouse (231)

Neurons Neuronal plasticity, memory ROS regulated signaling, ion
channels, and transcription

NOX2, p47phox KO
mice

(139)

Neuronal development ROS regulation of signaling and
transcription

NOX2 KO mouse (61)

Pancreatic beta cells Insulin secretion ROS regulation of signaling and
transcription

NOX2 siRNA and
NOX2 KO mouse

(165, 337)

Hepatocytes Apoptosis ROS regulation of transcription NOX2 expression (191)

Hematopoeitic cells Development, mitosis ROS regulation of signaling and
transcription

NOX2 KO mouse (311)

Adipocytes Differentiation ROS regulation of signaling and
transcription

Inhibitors,
translocation of
p47phox and
p67phox

(255)

Pulmonary
neuroepithelial
bodies

O2 sensing ROS activation of O2
� - sensitive

K + channels
NOX2 siRNA (34)

Lens epithelial cells Cell proliferation ROS regulation of signaling p22phox siRNA,
translocation of
p47phox and
p67phox

(320)

CGD, chronic granulomatous disease; NADPH, nicotinamide adenine dinucleotide phosphate, reduced form; NO, nitric oxide; NOX,
NADPH oxidase; NET, neutrophil extracellular trap; ROS, reactive oxygen species.
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of the anti-inflammatory mediators cyclopentenone prosta-
glandin D2 and transforming growth factor beta (32).

NOX2 also plays a role in non-canonical autophagy, such as
that associated with phagocytosis in which the cell engulfs in-
tracellular debris and helps prevent escape of a phagocytized
organism. In neutrophils, Toll-like and Fcc receptors activate
NOX2, and the ROS produced participate in a signaling cascade
that recruits the autophagy protein LC3 to phagosomes (105).

Microglia. Microglia are macrophage-like phagocytic
cells that reside in the brain where they function in host de-
fense and repair after tissue damage. As with other phagocytes,
their effects may be mediated directly by ROS or indirectly via
ROS-dependent inflammatory mediators. Spinal cord micro-
glia from NOX2 knockout mice made less ROS and produced
less pro-inflammatory cytokines in response to agonists (214)
or injury (136) than did wild-type microglia, demonstrating an
essential role for NOX2-derived ROS in up-regulating mi-
croglial pro-inflammatory cytokines.

Dendritic cells. Nox2-generated ROS also play a critical
role in antigen processing before presentation by dendritic cells
to naı̈ve T lymphocytes [reviewed in ref. (145)]. Some of the
evidence for a role of NOX2 in this area comes from studies
which showed that the presentation of antigens such as oval-
bumin by mouse bone marrow-derived dendritic cells to CD4 +
T lymphocytes was decreased by the NOX2 inhibitor ebselen
(180) and defective in dendritic cells isolated from NOX2
knockout mice (256). Observations that the pH within the
phagosomes of dendritic cells isolated from wild-type mice, but
not NOX2-deficient mice, rises slightly above pH 7 after in-
ternalization of beads or bacteria led to the model that NOX2-
generated ROS consumes incoming protons, causing an
increase in pH that is suboptimal for phagosomal (and also
endosomal/lysosomal) proteases which prefer acidic environ-
ments. This process would serve to prevent complete prote-
olysis of antigens, enabling proper processing and presentation
to occur. However, another study does not support this pH-
based model and suggests a redox-based model instead (247).
Besides the regulation of phagosomal pH, NOX2-generated
ROS within phagosomes may directly oxidize and inactivate
proteins of the phagosome, such as vacuolar H( + )-ATPase
(75) and cysteine proteases (cathepsins B, L,S) (192), and also
directly oxidize the antigens themselves to facilitate antigen
presentation (44, 229).

Vascular cells

The physiological effects of NOX-generated ROS on
various vascular cells, most notably endothelial and vascular
smooth muscle cells (VSMCs), have been a focus of intense
interest (27, 141, 159, 174, 260). Understanding specific roles
for NOX2 is complicated by the presence of several NOX
family members in vascular cell types, and different isoform
expression in different anatomical regions of the vasculature
(venous vs. arterial, lung vs. general circulation, microvas-
culature, etc.).

An important function of NOX enzymes in blood vessels is
control of vascular tone, a process that involves both VSMC
and endothelial cells. The endothelium produces NO, which
potently mediates the relaxation of vascular smooth muscle
(111). O2

� - reacts rapidly with NO, eliminating its vaso-

relaxing effects. Angiotensin II (Ang II) also activates NOX-
dependent ROS production in VSMC, signaling kinases and
transcription pathways that increase vascular tone (159).
While this is usually attributed to NOX1 (173) and/or NOX4
(264), siRNA depletion of NOX2 inhibited both basal and
Ang II-induced ROS production in primary VSMC isolated
from spontaneously hypertensive rats (29). NOX2 knockout
mice displayed significantly less endothelial ROS production
and significantly higher endothelium-dependent relaxation
than wild-type mice (89). Human CGD patients manifest
increased vascular NO and increased vasodilation, providing
a direct link between NOX2 and endothelial function (314).

The endothelial NOX2 system also appears to play a role in
regulating interactions between endothelial cells and neutrophils
that lead to neutrophil migration through the endothelial layer.
Coronary microvascular endothelial cells from p47phox- / -

mice stimulated with TNF-alpha failed to initiate normal
ROS-dependent kinase and transcription factor cascades, and,
consequently, also failed to express ICAM-1, which is necessary
for neutrophil adhesion (164). It should be cautioned, however,
that p47phox and its homologue NOXO1, while usually assumed
to be specific for NOX2 and NOX1, respectively, have the
in vitro ability to activate the other NOX isoform (42); that is,
p47phox can activate NOX1, and NOXO1 can activate NOX2. If
such cross-activation occurs in vivo, this might lead to an in-
correct interpretations of the role of NOX2 (153).

NOX-derived ROS also functions in vascular growth,
proliferation, and apoptosis in both VSMCs and endothelial
cells (78, 173). Various agonists differentially stimulate ROS
production from various NOX isoforms through several re-
ceptor, kinase, and transcription pathways that lead to altered
developmental programs (49, 78). In one study, siRNA
against NOX2 inhibited both ROS production and p38-MAP
kinase-dependent proliferation in an endothelial cell line and
in primary endothelial cells, while overexpression of NOX2
increased both responses (221). Using the same methods,
NOX4-derived ROS was also shown to contribute to both re-
sponses, indicating a degree of isoform functional redundancy.

Muscle cells

ROS modulate functions of both cardiac and skeletal muscle,
notably calcium signaling and contractility (7, 118). In partic-
ular, ROS sensitize ryanodine receptors, increasing calcium
release (98, 251). NOX2 is expressed in sarcolemma and t-tu-
bule membranes (98, 186), and studies in knockout mice pin-
pointed the source of stretch-activated ROS in cardiac muscle
cells as NOX2 (231). In addition, gp91ds-tat, a peptide inhibitor
of NOX2, inhibited the normal ROS-induced intracellular cal-
cium release. Skeletal muscle fibers from NOX2 knockout mice
did not produce ROS in response to muscle activity, and they
also failed to release specific histone deacetylases that usu-
ally control gene expression (168). Despite these associa-
tions, we are not aware of any reports of functional defects in
cardiac or skeletal muscle function in CGD patients, sug-
gesting that if such effects exist, they are subclinical or
compensated.

Other cell types

Along with the cell types discussed earlier, ROS produced
by NOX enzymes are implicated in signaling in a large number
of tissues and cell types (17, 31, 225, 232), although little
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evidence specifically implicates NOX2. For example, NOX2
has been reported as a signal generator in hepatocytes (191)
and adipocytes (255), based on tissue expression of NOX2 and
the use of inhibitors and ROS scavenging. Over-expression of
p22phox and membrane translocation of NOX2 cytosolic
regulatory subunits correlates with ROS-mediated mitogenic
signaling in lens epithelial cells (320). Evidence for the par-
ticipation of NOX2-derived ROS in signaling pathways con-
trolling beta cell insulin secretion has been obtained using
siRNA (337) and NOX2-deficient mice (165). Neurons from
NOX2-deficient mice showed impaired N-methyl-d-aspartate
(NMDA) receptor-dependent long term potentiation (139) and
also dysregulation of signaling pathways that are essential to
proliferation (61). A study using NOX2-deficient mice also
suggests that NOX2-derived ROS control release of the neu-
rotransmitter glutamate in response to specific agonists (280).
In hematopoietic cells, low oxygen tension in the bone marrow
maintains quiescence and stem cell potential. The higher pO2

in the vasculature leads to ROS production that signals cell
division and migration (72, 112); other signals also induce
NOX2-derived ROS that promote hematopoietic cell differ-
entiation, migration, and senescence (261, 268). Studies using
knockout mice report that NOX2 is a major source of the ROS
which control cell division in myeloid precursor populations
(311), although the physiological significance is unclear as
human CGD patients are not reported to have myeloid cell
deficiencies. In addition to controlling the general types of
physiological and developmental processes in the cell types
discussed earlier, NOX2 is implicated as an oxygen sensor in
pulmonary neuroepithelial bodies (34).

Diseases in Which NOX2 Is Implicated

Throughout the eukaryotic domain, NOX enzymes func-
tion to trigger adaptive mechanisms in response to stresses,
environmental assaults, or other noxious stimuli (5). In this

Table 2. Diseases in Which NOX2 Is Implicated

Disease
Type of evidence
for NOX2 role References

Hypertension NOX2 siRNA in
mice

(220)

Apocynin in mice (303)

Acute lung
inflammation

NOX2 KO mice (216, 217, 315,
316, 340)

p47phox KO mice (114, 340)

Chronic obstructive
pulmonary disease

P47phox KO mice (150)
Apocynin effects on

H2O2 in patients
(283)

Asthma Steroids lower
NOX2 in patients

(203)

Apocynin effects on
H2O2 in patients

(284)

Ebselen effects in
guinea pigs

(338)

Cystic fibrosis Neutrophil
infiltration seen in
patients

(95)

Pulmonary
hypertension

NOX2 KO mice (198)
NOX2 activation

and apocynin
effects in lamb
model

(302)

Ischemia-
reperfusion injury
in lung

p47phox KO mice (333)

Apocynin effects in
mice, rats, and
sheep

(43, 215, 333)

Ischemic stroke NOX2 KO mice (116, 167, 297)
Apocynin effects in

mice
(116, 295)

VAS3870 effects in
mice

(140)

Traumatic brain
injury

NOX2 KO mice (64)
Apocynin effects in

mice
(45, 279, 339)

gp91(NOX2)ds-tat
peptide in mice

(339)

Alzheimer’s disease Ab peptides activate
ROS and cytokine
production
in vitro

(23)

gp91 (NOX2)
activation in
human AD brain

(10, 270)

NOX2 KO mice (209)
gp91(NOX2)ds-tat

inhibitor peptide
in mice

(210)

Parkinson’s disease NOX2 KO mice (331)
NOX2 increased in

human PD brain
(331)

Amyotrophic lateral
sclerosis

NOX2 increased in
ALS patients

(330)

NOX2 KO mice (175, 330)
Apocynin effects in

mice
(94)

(continued)

Table 2. (Continued)

Disease
Type of evidence
for NOX2 role References

Schizophrenia NOX2 increased in
neurons in mouse
models

(19, 280)

Apocynin effects in
rodents

(19, 258, 280)

NOX2 KO mouse (280)
p47phox mutated rat (258)

Muscle disorders NOX2 activated by
stretch in rodent
in vitro models

(231)

NOX2 in muscle
activated in mdx
mice

(135)

DPI inhibitor effects
in vitro

(231)

gp91(NOX2)ds-tat
peptide inhibitor
in vitro

(135, 231)

NOX2 KO mice (231)

AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis;
DPI, diphenylene iodonium H2O2, hydrogen peroxide; PD,
Parkinson’s disease.
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context, a role of NOX enzymes in causing direct damage to
invading microbes can be considered to be one subclass of a
stress response that exploits the ability of ROS to damage
macromolecules of invading microbes. Other adaptive roles
of ROS in innate immunity also conform to this paradigm;
for example, ROS activate immune signaling pathways
that trigger cytokine release, differentiation, apoptosis, etc.
Paradoxically, NOX-generated ROS can damage host tissues
directly, can initiate a hyper-inflammatory response that re-
sults in further tissue damage, and can cause longer-term
changes, including alterations to cell apoptotic and differenti-
ation programs, for example, differentiation of myofibroblasts
which then deposit fibrotic material. While disease-triggering
events are legion and may be unknown, a variety of diseases
seem to have in common the central role of NOX-generated
ROS in the pathogenic process. This section focuses on those
conditions, summarized in Table 2, in which NOX2-derived
ROS are considered to play an important role in pathogenesis,
and which, therefore, represent candidate indications for
NOX2-targeted drugs.

Vascular diseases

Hypertension. Hypertension is a major risk factor for
stroke, heart failure, aneurysms, and peripheral artery disease,
and it is a cause of chronic kidney disease. Even moderate
elevation of arterial blood pressure predicts a shortened life.
While multiple factors contribute to hypertension, oxidative
stress is a unifying theme (264). In addition to vasculature,
tissues involved in the pathogenesis of hypertension include
the central nervous system (220, 342) and the kidney (249).

Evidence supports a role for ROS, particularly from
NOX1, 2, and 4 in hypertension (264). In an acute model of
Ang II-induced hypertension in mice, adenoviral-mediated
delivery of either NOX2 siRNA or NOX4 siRNA to the brain
subfornical organ prevented increases in mean arterial pressure
and in heart rate, and simultaneous delivery of both siRNAs
resulted in even greater suppression. The Ang II-induced in-
crease in ROS was significantly inhibited in cultured forebrain
neurons from NOX2- or NOX4-siRNA treated animals, and
abolished in neurons from animals treated with both (220).

In another study (303), Dahl salt-sensitive rats were
maintained on high-sodium drinking water, with or without
the NOX inhibitor apocynin. By day 35, mRNA expression of
renal cortical NOX2 and regulatory subunits markedly in-
creased in high-salt rats but not in apocynin-treated rats. In
apocynin-treated animals: (i) renal cortex showed a less ox-
idizing environment, based on reduced glutathione-to-
oxidized glutathione (GSH:GSSG) ratios; (ii) renal cortical
O2
� - decreased; and (iii) renal glomerular and interstitial

damage were markedly improved. Apocynin also decreased
renal cortical monocyte/macrophage infiltration, improved re-
nal hemodynamics, and decreased arterial pressure. Due to
ambiguities about the mechanism of action of apocynin detailed
next, definitive identification of NOX2 as the source of ROS in
these studies should be confirmed using other approaches.

In contrast, eliminating NOX2-associated ROS production
was ineffective in some chronic models of hypertension. In
one study, transgenic mice overexpressing human renin
(TTRhRen) exhibited hypertension and cardiac hypertrophy
by age 10–12 weeks. Although TTRhRen/NOX2 - / - mice
had significantly lower ROS levels in heart and aorta, these

mice still developed hypertension and cardiac hypertrophy
(305). It is possible that other NOX isoforms might compensate
for NOX2 loss in this model, or that other non-NOX mechanisms
are involved. Consistent with roles for other NOX isoforms in
hypertension, aortic media of spontaneously hypertensive
rats showed *2.5-fold increased NOX4 mRNA and *10-
fold increased NOX1 mRNA compared with control rats,
whereas NOX2 and p22phox mRNA levels were similar (6).

Pulmonary hypertension. Pulmonary hypertension (PH)
is a complex disease in which increased blood pressure de-
velops in the lung vasculature, leading to extreme exertion
symptoms during normal activity, exercise intolerance, and,
in some cases, heart failure. PH has been classified into
several types (273); this discussion is limited to hypoxia-
related PH. Chronic hypoxia arising from obstructive sleep
apnea, high altitude environment, chronic obstructive pul-
monary disease (COPD), and pulmonary fibrosis can lead to
PH. Currently, there is no known cure for PH, and current
treatments aim at controlling symptoms and preventing ad-
ditional lung damage.

While much of the evidence supports a role for NOX4 in the
pathogenesis of PH (183, 184), evidence suggests that NOX2 is
also involved. Obstructive sleep apnea, characterized by inter-
mittent periods of hypoxia, is a risk factor for the development
of PH. Experimentally, chronic intermittent hypoxia (CIH) in-
duces PH, by increasing expression of NOX2 as well as NOX4,
both of which may contribute to pulmonary vascular remodel-
ing and hypertension (77, 198). Male mice exposed to CIH had
increased right ventricular systolic pressure, right ventricle hy-
pertrophy, and increased thickness of the right ventricular an-
terior wall and evidence of pulmonary vascular remodeling.
Pathological changes were attenuated in NOX2 knockout mice
that were subjected to CIH, consistent with a role for NOX2 in
CIH-induced PH (198).

NOX2 may also contribute to PH indirectly via autophagy
(302). In a study in which PH was induced surgically in fetal
lambs, isolated pulmonary artery endothelial cells showed
increased ROS production and translocation of p47phox,
pointing to NOX2 activation. In addition, autophagy was in-
creased compared with sham-operated fetal lambs. Inhibition
of autophagy using 3-methyl adenine or chloroquine decreased
NOX2 activation and O2

� - generation, while administration of
the antioxidant N-acetyl cysteine or the NOX2 inhibitor
apocynin starting at birth improved lung oxygenation. Thus,
autophagy may contribute to PH by increasing NOX2 activity.
Collectively, these studies suggest that in addition to NOX4,
NOX2 may be a target for drug development of PH.

Lung diseases

Acute lung injury and acute respiratory distress syn-
drome. NOX2-generated ROS are associated with a range of
respiratory inflammatory diseases/injuries, including acute
lung inflammation (ALI) and its more severe form, acute re-
spiratory distress syndrome (ARDS). ALI/ARDS can result
from an over-reaction of the host immune system to certain
infections (certain influenza strains such as the 1918 flu, avian
flu, sepsis, etc.) and also from physical trauma, blood loss,
transfusion, hyperoxia, ventilator-induced lung injury, aspi-
ration, and pancreatitis (181). Conventional anti-inflammatory
drugs are ineffective in ARDS, which affects 200,000 U.S.
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patients yearly and is fatal in approximately 40% of cases
(244). The NOX2 system and other NOX enzymes have been
implicated in ALI/ARDS in several studies. NOX2 and other
NOX isoforms are expressed in endothelial and epithelial cells
of the lung, where they may participate in early signaling
events preceding ALI/ARDS (39, 298). Neutrophil infiltration
into the alveolar spaces of the lung during the acute phase of
ALI/ARDs is clearly visible in postmortem lung sections from
ARDS patients as well as in bronchoalveolar lavage fluid
(181). In mouse models, the effects on inflammatory responses
observed in NOX2 knockout mice or p47phox-deficient mice
depend on the model system [reviewed in ref. (39)]. When
TNF-alpha was used to induce ALI, mice deficient in NOX2 or
p47phox exhibited markedly diminished inflammatory re-
sponses (340). However, in a sepsis-induced ALI mouse
model, the inflammatory response in p47phox knockout mice
was not significantly different compared with wild-type mice
(143). The role of NOX2 in the development of hyperoxic lung
injury is also unclear. In one set of studies (216, 217), NOX2-
deficient mice exposed to acute hyperoxia had less severe
pulmonary edema and neutrophil influx into the lung, but in
another study, NOX1- but not NOX2-deficient mice were
protected from lung injury (38).

Several studies have focused on the role of NOX2 in lung
inflammation resulting from viral infection. When chal-
lenged with inactivated H5N1 influenza virus, mice deficient
in p47phox showed less severe lung pathologies and de-
creased virus titers compared with control mice (114).
NOX2-deleted mice infected with influenza A viruses dis-
played significant reductions in viral titers, peri-bronchial
inflammation, BALF macrophages, BALF inflammatory cell
O2
� - , lung ONOO - , monocyte chemoattractant protein-1

(MCP-1), and alveolar epithelial cell apoptosis compared
with wild-type mice. Lung levels of the anti-inflammatory
factor IL-1beta were *3-fold higher in NOX2-deleted mice.
In vivo administration of apocynin to infected wild-type mice
decreased viral titer, airway inflammation, and inflammatory
cell O2

� - production after infection. These findings suggest
that NOX2-selective inhibitors may have therapeutic poten-
tial for control of lung inflammation and damage in viral
infections (315, 316).

Chronic obstructive pulmonary disease. COPD is pro-
jected to become the fourth leading cause of death worldwide
by 2030 (170). COPD is characterized by progressive lung
inflammation and irreversible narrowing of the airways.
Three risk factors are associated with COPD: (i) cigarette
smoking; (ii) heavy exposure to occupational and indoor air
pollution; and (iii) alpha-1 antitrypsin deficiency (69, 110).
Available therapies for COPD include long-acting broncho-
dilators and at late stages, glucocorticoids. These treatments
are largely ineffective at attenuating the inflammation or
reversing the airflow obstruction associated with the disease,
highlighting the need for new therapies.

In patients with COPD, there is an accumulation of neu-
trophils and macrophages in the lungs of smokers versus non-
smokers (228, 246, 322). Phagocyte-generated ROS can
contribute to diminished enzymatic activity of proteinase
inhibitor enzymes (24) such as secretory leukocyte proteinase
inhibitor (40) and tissue inhibitors of matrix metalloprotei-
nases (321), and also can increase the activity of proteinases
such as matrix metalloproteinase (81). As in other lung

inflammatory diseases, elevated ROS lead to increased pro-
inflammatory cytokines. Oxidative stress may also damage
the hypoxia response element within the vascular endothelial
growth factor promoter of COPD patients (213), causing
defective responses to hypoxia.

There are conflicting reports as to whether the deletion of
p47phox reduces inflammation in the cigarette smoke-
induced COPD mouse model. In one study (150), the num-
ber of macrophages and neutrophils and levels of IL-6,
keratinocyte-derived chemokine (KC/CXCL1), and MCP1/
CCL2 in BALF were lower in p47phox - / - mice exposed
to cigarette smoke compared with mice exposed to air.
However, in another study (334), while ROS production was
decreased in BALF cells of p47phox - / - mice and NOX2 - / -

mice, the knockout mice showed increased lung inflamma-
tion with development of distal airspace enlargement and
alveolar destruction. Inflammation was associated with acti-
vation of the TLR4-NF-kappa B pathway in the gene-deleted
animals. The authors concluded that genetic ablation of
components of NADPH-oxidase enhances susceptibility to
the proinflammatory and lung-damaging effects of cigarette
smoke. This finding may relate to pro-inflammatory effects
seen in humans in which components of the NOX2 system are
mutated, as discussed in the section ‘‘CGD, hyperin-
flammation, and autoimmune disease.’’ or may highlight the
inadequacies of mouse models. While it is not clear from
earlier descriptions as to whether NOX2 represents a prom-
ising target for human drug development, apocynin admin-
istered to COPD patients was effective in decreasing H2O2

levels in exhaled breath condensates (283).

Asthma. Asthma is a chronic inflammatory disorder of
the airways that is characterized by episodic and reversible
airflow obstruction and airway hyper-responsiveness (26).
An estimated 300 million people worldwide suffer from
asthma, with 250,000 annual deaths attributed to the disease
(1). Emphasizing the need for new therapeutic approaches,
current therapies are unsatisfactory in about half of the cases,
and a subgroup of patients are refractory to current anti-
inflammatory and bronchodilator therapies (100).

Oxidative stress and NOX enzymes appear to participate in
the pathobiology of asthma, but it is not yet clear which iso-
form is likely to represent the best target for drug development.
Blood of asthmatic children showed elevated biomarkers of
oxidative stress (203). Consistent with the involvement of
NOX2, inhaled corticosteroids that relieve symptoms also di-
minished NOX2 mRNA expression in circulating leukocytes
from asthmatics. Administration of the NOX2 inhibitor
apocynin to asthmatic patients led to decreased H2O2 levels in
exhaled breath condensates (284). In guinea pigs, ebselen, a
potent NOX2 inhibitor (276, 338), was able to improve the
ovalbumin-induced asthmatic inflammatory responses, con-
sistent with a role for NOX2 (276, 338). However, other evi-
dence suggests that NOX2 may have a protective role in
asthma, at least in mice. In the ovalbumin asthma model,
NOX2 gene-deleted mice showed increased inflammatory re-
sponses and airway hyper-reactivity compared with wild-type
mice. Based on co-culture experiments, the authors proposed
that this resulted from increased interaction between Th2 cells
and macrophages in the absence of NOX2 (14, 15).

Other NOX isoforms have also been associated with the
pathobiology of asthma. In the ovalbumin asthma mouse
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model, increased expression of NOX1, 2, 3, and 4 was seen,
and symptoms were improved using artesunate, an antima-
larial drug with antioxidant properties (99). Primary airway
smooth muscle cells isolated from biopsies from individuals
with asthma versus healthy controls showed increased oxi-
dative DNA damage along with increased ROS production
that was attributed to increased NOX4 expression. Airway
smooth muscle cells isolated from individuals with asthma
exhibited increased bradykinin-induced contractility com-
pared with non-asthmatic control cells. This was abrogated
by NOX4 siRNA, diphenylene iodonium (DPI), or apocynin
(93, 293). In addition to NOX4, epithelial DUOX1 was in-
duced by the Th2 cytokines IL-4 and IL-13, which are
commonly elevated within asthmatic airways (93). Thus,
while oxidative stress appears to play a pathogenic role, a
distinct role for NOX2 in asthma will require additional in-
vestigation.

Cystic fibrosis. Cystic fibrosis (CF) is caused by mutations
in the CF transmembrane conductance regulator (CFTR) gene
resulting in misfolding of the CFTR protein and defective
regulation of chloride transport by epithelial cells in several
tissues; respiratory failure is the main cause of mortality and
morbidity (95). CF, diagnosed in 1 out of 3000 births, is
characterized by sustained neutrophil recruitment to lung and
neutrophil-dominated inflammation from a very young age.
Neutrophil NOX2-derived H2O2 can also fuel myeloperox-
idase-dependent HOCl generation, which has been suggested
to correlate with the severity of the disease (236, 329).
DUOX1/2 may also contribute to CF (224). Thus, inhibitors of
NOX2 and/or myeloperoxidase may decrease inflammation
and diminish lung tissue damage in this condition.

Ischemic conditions

Ischemia-reperfusion injury after lung transplantation. Pa-
tients undergoing lung transplantation risk graft dysfunction
secondary to reperfusion injury during which ROS are formed,
leading to tissue destruction. In addition, patients with pul-
monary artery blood clots, receiving cardiopulmonary bypass,
or recovering from some form of pulmonary crisis are also
likely to incur reperfusion injury. Currently, proven preven-
tative or treatment drugs are unavailable, although clinical
trials of promising therapies are under way (323).

ROS play an important role in lung ischemia-reperfusion
injury (LIRI). In sheep subjected to LIRI, apocynin attenu-
ated LIRI-induced increases in vascular permeability and
pulmonary arterial hypertension (215). Apocynin also alle-
viated lung pathologies in a rat model of LIRI (43). In a
mouse model of LIRI, wild-type mice, p47phox - / - mice, or
chimeras created by bone marrow transplantation between
p47phox - / - and wild-type mice were subjected to LIRI to
investigate whether neutrophils deficient in p47phox would
decrease the severity of LIRI (333). Both wild-type mice
treated with apocynin and p47phox - / - mice displayed
markedly decreased pulmonary dysfunction and injury
(vascular permeability, edema, neutrophil infiltration, and
lipid peroxidation) compared with untreated wild-type mice.
In addition, in this study, pulmonary dysfunction and injury
occurring after LIRI were significantly decreased in the
p47phox - / - /wild-type (donor/recipient) chimeric mice, but
not in wild-type/p47phox - / - donor/recipient chimeras.

Moreover, the induction of TNF-alpha, IL-17, IL-6, RANTES
(CCL5), KC (CXCL1), MIP-2 (CXCL2), and MCP-1 (CCL2)
was significantly lower after LIRI in p47phox - / - mice and
p47phox - / - /wild-type chimeras but not wild-type/p47phox- / -

chimeras. These results suggest that NOX2 contributes to LIRI.
Thus, NOX2 inhibitors may provide a novel therapeutic ap-
proach for ischemia-reperfusion in the lung.

Ischemic stroke. Ischemic stroke is a leading cause of
death (171), and the repeated failure of promising experi-
mental stroke treatments in human clinical trials (127) makes
it likely that this situation will not change soon. Both NOX2
and NOX4 have been implicated in stroke pathogenesis (128,
140, 182). Most animal studies have used the transient middle
cerebral artery occlusion model, measuring infarct volume
and blood–brain barrier permeability as parameters that in-
crease after occlusion and reperfusion. These two parameters
were improved in ischemic NOX2 knockout mice, and
apocynin also attenuated blood-brain barrier permeability in
wild-type mice (130). Other studies report similar findings
and provide further support for a role for NOX2 in the path-
ogenesis of ischemic stroke (167, 296, 341).

On the other hand, another study (140) showed that there
was substantial protection from induced ischemic stroke in
NOX4-deficient mice, but not in NOX1- or NOX2-deficient
mice. Still other studies have shown that NOX1 may exert a
protective effect in stroke (129). NOX1-deficient mice
showed no difference in sub-cortical cerebral infarct volume,
but a four-fold greater cortical infarct volume. Apocynin
(116, 167, 296, 341) and the small molecule NOX inhibitor,
VAS2870 (140) improved outcome in the mouse models of
ischemic stroke. The reported discrepancies among studies
may relate to the duration of ischemia before reperfusion,
and, in general, suggest that NOX2 and/or NOX4 inhibition is
likely to be most effective when administered early after
stroke. These studies also emphasize the need for isoform-
selective inhibitors.

Neuroinflammatory diseases

Traumatic brain injury. The number of traumatic brain
injury (TBI)-associated deaths continues to increase world-
wide. While acute care of head injuries has improved, ex-
tension of the primary lesion due to oxidative damage and
inflammation, disruption of the blood–brain barrier, exces-
sive release of the neurotransmitter glutamate, and other
events leading to neuronal death can exacerbate the injuries
of brain trauma patients, who, as a result, may die days or
weeks later (210, 254).

Evidence for the contribution of NOX2-generated ROS to
neuroinflammation and neuronal death comes from studies
using the rodent cortical impact model of TBI. In one study,
unilateral TBI was induced in NOX2 knockout and wild-
type mice (64). After injury, NOX2 expression increased
mainly in microglial cells of the ipsilateral hemisphere of
the wild-type mice. The contusion area, number of TUNEL-
positive cells, and amount of O2

- and ONOO - metabolites
produced were decreased in NOX2 - / - mice. In other
studies (45, 138, 279, 339), NOX activity in the cerebral
cortex and hippocampal regions increased rapidly after
impact, and pre- or post-treatment with apocynin or the
NOX2 inhibitory peptide NOX2ds-tat markedly decreased
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O2
� - levels in hippocampal neurons, oxidized lipid bio-

marker levels, blood–brain barrier disruption, microglial
activation, and neuronal death. Thus, TBI may be an at-
tractive indication for NOX2-directed drugs.

Alzheimer’s disease. In 2010, 35.6 million people were
estimated to be living with dementia, with an estimated 7.7
million new cases each year. The yearly cost of dementia
health care in the United States is estimated at US$ 604 bil-
lion. Alzheimer’s disease (AD) is the most common form of
dementia and is estimated to account for 60–70% of cases.
Current treatments fail to cure and only minimally impact the
progression of the disease, although new approaches to
treatment are being investigated in clinical trials (2).

Amyloid beta protein is found in plaques of brains from
AD patients. Beta-amyloid peptides Ab(1–40) and Ab(1–42)
are generated by proteolytic cleavage from amyloid precur-
sor protein, a transmembrane protein that is important for
neuron growth, survival, and repair (227, 267). Ab(1–42) and
Ab(1–40) oligomers accumulate in fibrils in the extracellular
spaces of the brain in AD patients (102, 202). Beta-amyloid
fibrils directly activate NOX2 in primary rat microglial cells
as well as in human neutrophils and monocytes (23), leading
to the production of ROS and pro-inflammatory cytokines
that participate in inflammatory tissue damage. Biochemical
studies showed increased p47phox and p67phox in membrane
fractions from human AD postmortem cortices as well as
increased NOX2 activity in brain cortex homogenates com-
pared with age-matched non-diseased brains (10, 270).

In addition to microglial NOX2, endothelial NOX2 may
also contribute to the pathogenesis of AD due to effects on
blood flow. In wild-type mice, agents that release NO or
stimulate its in vivo production caused increased cerebral
blood flow which was attenuated in Tg2576 transgenic mice
that overexpress Ab. This impairment was not observed,
however, in Tg2576 mice lacking NOX2, implicating
NOX2 in the vascular dysfunction induced by Ab fibrils
(209). Direct application of Ab(1–40) onto the cortex in-
creased ROS production in wild-type mice; this increase
was abrogated by gp91(NOX2)ds-tat and also in the
NOX2 - / - mice. A NOS inhibitor prevented Ab-induced
modulation of blood flow, which was consistent with the
idea that NOX2-generated O2

� - scavenges NO, thus de-
creasing its bioavailability. While plaque load and brain Ab
levels did not differ between Tg2576 and Tg2576/NOX2 -

/ - mice, Tg2576 mice lacking NOX2 were protected from
behavioral dysfunction (210). These data point to AD as an
indication for NOX2-targeted drugs.

Parkinson’s disease. Parkinson’s disease (PD) is the
second most prevalent age-related neurodegenerative dis-
ease, with physiological manifestations that include tremor,
rigidity, slowness of movement, and postural instability,
along with impairments in speech, cognition, mood, and
behavior. Pathologically, PD is characterized by the loss of
dopaminergic neurons in the substantia nigra and the ap-
pearance in neurons of Lewy bodies composed of misfolded
alpha-synuclein protein (277). Although the etiology of PD
has been intensively pursued for decades, biochemical
mechanisms, genetic and epigenetic factors leading to initi-
ation and progression of the disease remain elusive. Only 10–
15% of PD is due to known genetic mutations. Environmental

exposure has been proposed to account for a subset of PD,
and exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP), paraquat, and rotenone increases the risk of PD in
humans. To date, no drug therapy alters the progression of PD.
Levodopa improves motor impairments, but dyskinesia can be
an unsettling side effect. While a number of new therapeutics
[reviewed in ref. (222)] are in the pipeline, whether they are
able to alter disease progression remains to be determined. To
date, drug candidates that have gone through clinical trials
have proved disappointing, and new treatment approaches are
being explored, which include gene transfer, cell-based ther-
apies, and deep brain stimulation. Thus, disease-modifying
drugs remain an unmet medical need.

Regardless of the initiating cause, oxidative stress remains
a leading theory for explaining the progression of PD. Studies
with cell and animal models reveal oxidative and inflam-
matory properties of PD-inducing toxins and their ability to
activate glial cells. Activated microglia produce a host of
factors that are toxic to neighboring dopaminergic neurons.
In particular, the microglial NOX2 system exerts pathologi-
cal effects both by direct ROS damage to neighboring neu-
rons and also by triggering inflammatory cytokine signaling
that results in a vicious cycle of sustained microglial acti-
vation and neuronal damage (292, 325). In a PD mouse model
(331), MPTP induced overexpression of microglial NOX2,
elevated ROS, and increased biomarkers of oxidative damage
in the substantia nigra pars compacta. ROS production, oxi-
dative damage, and neurodegeneration were substantially
reduced in MPTP-treated NOX2-deleted mice. SOD infusion
into the left striata attenuated the lesion on this side, but not
on the contralateral, non-SOD infused side. NOX2 protein
expression in six human PD midbrains was increased twofold
in comparison to age-matched control brains, pointing to
human relevance of the mouse model. Other NOX enzymes
may also contribute to PD under some conditions or model
systems; for example, similar approaches implicate neuronal
NOX1 in PD pathogenesis in the rat 6-hydroxydopamine PD
model (46) and rat paraquat PD model (51). Therefore,
NOX2 and perhaps other NOX isoforms are attractive targets
for slowing the progression of PD.

Amyotrophic lateral sclerosis. Amyotrophic lateral scle-
rosis (ALS), a.k.a. Lou Gehrig’s disease, results in loss of
motor neurons, leading to progressive muscle paralysis (226).
ALS is relatively rare, with a reported incidence of 1–2 per
100,000 per year. However, during the 1990s, clusters of
cases were seen in Japan, Micronesia, and Indonesia with a
local incidence at least 50 times higher than that seen
worldwide (18). The average life expectancy of ALS patients
ranges from 2 to 10 years after diagnosis. Mutations in SOD1
account for *20% of familial cases, which is about 2% of
total cases (55, 59). The drug Riluzole (Rilutek) improves
survival but does not reverse existing motor neuron damage,
and patients should be monitored for liver damage, which
occurs in *10% of treated individuals. Oxidative stress has
been proposed to function in the progression of ALS, and
several antioxidants, including vitamin E, N-acetyl cysteine,
and selenium, have been investigated in clinical trials; none
has made a significant impact on disease progression (207).

While the initiating causes and pathogenesis of ALS in
humans is poorly understood, evidence indicates that NOX
enzymes contribute to the neurodegenerative process (238).
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A transgenic mouse bearing the SOD1G93A mutation has
been extensively used as a model of ALS; the mutation does
not affect SOD enzymatic activity but rather affects its
binding to some other proteins. NOX2 overexpression and
increased biomarkers of oxidative stress have been observed
in spinal cords of both ALS patients and SOD1G93A mice. In
SOD1G93A mice in which NOX2 was deleted, neurode-
generation was delayed and survival was extended (330). The
ability of NOX2 deletion to improve the life span of ALS
mice was supported in another study in SOD1G93A mice
(175) in which both NOX1 and NOX2 were induced; NOX2
deletion in these mice resulted in a dramatically increased life
span. Deletion of NOX1 also improved life span, but less
remarkably. Apocynin also dramatically increased the life-
span of SOD1G93A mice (94), but this result could not be
repeated in two independent studies (166, 306). This may
indicate either that the SOD1G93A mice provide an inade-
quate model human ALS, or that a more potent and/or se-
lective NOX inhibitor may be needed.

Schizophrenia. Schizophrenia, affecting around 1% of
the population worldwide (241), is a complex and disabling
neuropsychiatric disorder. Despite a long history of antipsy-
chotic drug development, approximately 30% of patients with
severe schizophrenia are refractory to existing medications
(200), emphasizing the need for new therapeutics and novel
targets. The disease is marked by dysregulation of several
neurotransmitter systems, including dopamine, glutamate, and
gamma-aminobutyric acid. The behavioral and physiological
characteristics of the disease can be mimicked by drugs that
cause dopamine overproduction or block NMDA receptors.
Oxidative stress increases in schizophrenia as evidenced by
reports of changes in oxidative stress biomarkers such as in-
creased oxidized-to-reduced glutathione ratios in the blood of
patients (48, 233, 245) and decreased reduced glutathione
levels in cerebrospinal fluid and postmortem prefrontal corti-
ces of schizophrenic patients (63). Limited studies have also
reported amelioration of symptoms after treatment of patients
with the antioxidant N-acetyl cysteine (21, 33).

The ketamine rodent model mimics many of the cognitive,
behavioral, and social deficits seen in human schizophrenia
(190). Sub-anesthetic concentrations of ketamine produce
psychotic-like symptoms in human volunteers, as well as
impairments in memory and sustained attention performance
that mimic the cognitive deficits observed in schizophrenia
patients. In mice, the activation of NOX2 contributes to the
dysfunction of GABAnergic interneurons after subchronic
ketamine exposure (19, 20). Ketamine increases oxidative
stress in rodent brain through the activation of neuronal
NOX2, which initiates a cascade of events that, ultimately,
leads to altered function in parvalbumin-expressing (PV + )
neurons that are believed to control cognitive function im-
pairments associated with schizophrenia. Significant in-
creases in the expression of NOX2 and p22phox (but not
NOX4) were observed in membrane preparations from brain
cortex of ketamine-injected mice. This increase in NOX2 was
accompanied by an increase in synaptosomal NADPH-
oxidase activity and paralleled a loss of PV + neurons (19). In
another study (280), ketamine caused rapid behavioral al-
terations, release of neurotransmitters, and brain oxidative
stress in wild-type mice; whereas NOX2-deficient mice
did not display such alterations. Wild-type mice showed

decreased expression of subunit 2A of the NMDA receptor
after repeated ketamine exposure, which did not occur in
NOX2-deficient mice, implicating NOX2 in down-regulation
of NMDA receptor subunits.

Social isolation of rodents provides an alternative model of
schizophrenia, leading to behavioral and histopathological
alterations that are similar to those seen in the human disease
(162). While NOX2 mRNA was not detected in the brains of
control non-isolated animals, it was highly expressed in
specific regions in the brains of socially isolated rats, which
also showed increased brain biomarkers of oxidative stress.
The treatment of isolated rats with apocynin prevented the
behavioral and histopathological alterations. Moreover, rats
with a functional mutation in p47phox (109) were protected
from behavioral changes, loss of PV protein, and decrease in
NMDA receptor subunit 2A (258). Thus, several lines of
inquiry point to NOX2 as a novel and promising target for the
treatment of schizophrenia.

Muscle disorders

The dysregulation of signal transduction from mechanical
stretch to muscle contraction contributes to heart failure and
muscle myopathies (230). In cardiac muscle cells, mechani-
cal stretch depolarizes the plasma membrane as a result of a
small influx of Ca2 + via l-type voltage-gated calcium
channels. This influx stimulates opening of ryanodine re-
ceptors (RyR2 in the heart), which are calcium channels on
the sarcoplasmic reticulum that release transient bursts of
Ca2 + into the cytoplasm (30, 299). These ‘‘calcium sparks’’
induce shortening of myofibrils and contraction, which ends
with relaxation when intracellular Ca2 + returns to resting
levels and the RyR close. However, oxidative stress targets
several cysteine residues on ryanodine receptors (11, 65, 98,
176), causing the receptor to become over-sensitized to Ca2 +

levels, and to remain open longer than normal (231). Ulti-
mately, the sarcoplasmic reticulum stores of Ca2 + fall to
inadequate levels that cannot support contraction, leading to
heart failure or skeletal muscle myopathies.

Recently, it was demonstrated that excessive Ca2 + release
from over-sensitized RyR2 results from rapid and reversible
ROS signaling originating in an intact microtubule network.
These observations were made using single cardiomyocytes
from mdx mice, which have a genetic mutation in the gene
coding for the cytoskeletal protein, dystrophin. Myocytes
from mdx mice had elevated ROS, and moderate stretching
produced excessive Ca2 + release from over-sensitized RyR2
receptors (231). NOX2 and its subunits are localized in the
membrane of the transverse tubules of rodent cardiomyo-
cytes, and moderate stretching of isolated single myocytes
activates ROS generation and translocation of NOX2 regu-
latory subunits to the membrane. Stretch-induced Ca2 + spark
production was inhibited by gp91(NOX2)ds-tat, as well as by
DPI. Moreover, in myocytes isolated from NOX2-deleted
mice, stretch-induced ROS generation was absent (135, 231).
Earlier observations (251) showed that NOX2 is present in
skeletal muscle fibers, and its activation contributes to Ca2 +

release from sarcoplasmic reticulum. ROS is also elevated in
skeletal muscle from mdx mice or dysferlinopathy, another
muscular dystrophy (230). It should be noted that NOX4-
generated ROS and oxidation of RyR1 have also been im-
plicated in muscular dystrophies (289).
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Possible Complications Resulting
from Inhibition of NOX2

When considering clinical drug development programs
targeting NOX2, it is important to bear in mind possible
complications that might arise from inhibiting the normal
functions of this enzyme and to weigh these against the hy-
pothetical benefits of treatment. The human genetic disorder
CGD as well as animal models provide insights into this
question.

CGD as a model for possible complications
of NOX2 inhibition

CGD is a genetic disease that is characterized by severe
bacterial and fungal infections and abscesses in the lung and
liver (266). Before the advent of antibiotics, affected indi-
viduals frequently succumbed to infections during childhood,
but with modern antibiotics and other therapies (131), indi-
viduals often survive into the fourth decade and beyond.
Neutrophils from CGD patients are defective in the respira-
tory burst, the process by which molecular oxygen is reduced
by the phagocyte NOX2 system to generate microbicidal
ROS (see section ‘‘General roles of reactive oxygen species
and NADPH oxidase enzymes’’ I, above). Genetically, the
condition results from mutations in or deletion of any of the
genes encoding subunits of the respiratory burst oxidase (97,
148) and is described in Table 3.

While targeting of NOX2 or its regulatory subunits with
small-molecular-weight inhibitors raises concerns about the
suppression of innate immunity resulting in increased in-
fections, infection-related symptoms are seen only when the
NADPH-oxidase activity is < 15–20% of normal (97, 148);
individuals with ROS-generating activity greater than this
value are asymptomatic and are, therefore, never diagnosed
with CGD. Moreover, an extensive analysis of deaths in a
study population of 287 CGD patients followed for more than
two decades (148) revealed that survival was independent of
the particular gene affected, but depended solely on the ex-
tent of residual NADPH-oxidase activity. Significant mor-
tality was manifested only when residual activity fell below
*2%: a single death occurred among patients classified as
having relatively high residual ROS generation, whereas
around a third of those with severe ROS deficiency had died
by age 40. It should be pointed out that today’s patients are
generally treated with prophylactic antibiotics, and that
conclusions are likely to differ in naı̈ve patients. Never-
theless, these studies point out that there is a considerable
reservoir of excess NOX activity and that even a modest
residual activity confers benefit. Dosing and scheduling of a
NOX2-targeting drug can, in principle, be managed so as to

avoid a high level of continuous inhibition, and the cyclic
nature of dosing should result in intervals during which ox-
idase activity returns to levels that allow adequate micro-
bicidal function. In addition, it should be noted that even in
CGD patients with complete loss-of-oxidase function, the
decreased survival is seen over the time scale of decades, and
mortality from suppression of innate immunity is not likely to
be an acute problem.

CGD, hyperinflammation, and autoimmune disease

In addition to impaired host defense, CGD is a disease of
excessive inflammation and increased risk of autoimmune
disorders (266). A hallmark of the disease is formation of
granuloma, foci in which macrophages and other immune
cells concentrate. Granuloma may occur in many organs,
including the gastrointestinal tract, where they contribute to
enteritis resembling Crohn’s disease, and in the genitourinary
tract, where they may result in blockages.

The pathogenesis of granulomatous lesions is not entirely
clear, but it has been suggested to result, in part, from fail-
ure to kill and clear microbes after minor infections. However,
recent studies indicate that this may be an over-simplification,
and that excessive inflammation may be explained by an im-
portant role for the NOX2-derived ROS in regulating the in-
flammatory response through redox-sensitive signaling and
transcription pathways (108, 266). Consistent with this inter-
pretation, phagocytic cells in CGD are markedly perturbed in
their gene expression, including increases in pro-inflammatory
genes, decreases in anti-inflammatory genes, and alterations in
apoptotic genes (144). The net result of the latter renders
phagocytes less susceptible to apoptosis, perhaps accounting
for their accumulation in granuloma. Another theory is that
tryptophan catabolism via the O2

� - -dependent enzyme in-
dolamine 2,3-dioxygenase is defective in CGD, leading to a
deficiency in production of kynurenine (240). The latter is
thought to participate in regulating the immune response, and
its absence may result in a hyperinflammatory state. Regard-
less of the explanation, it is obvious that phagocytes from CGD
individuals are markedly abnormal, not only in their ability to
kill certain microbes, but also in their significantly altered
expression of inflammatory, apoptotic, and other genes, which
is expected to result in altered function.

In addition to granuloma, there are a number of other clin-
ical manifestations of an overly exuberant immune response in
CGD. For example, fungal products result in a life-threatening
‘‘mulch pneumonitis’’ (271). In addition, CGD patients show
an increased frequency of certain autoimmune diseases, in-
cluding rheumatoid arthritis, a systemic lupus erythematosis
(SLE)-like syndrome, and Guillain-Barré syndrome, an auto-
immune demyelinating disease (86, 107, 108). Experiments in
rodent models summarized next add further insights into
mechanisms by which an absence of NOX2-dependent ROS
generation in cells of the innate immune system may propagate
effects through cell types of the adaptive immune system.

Because the majority of CGD patients have residual
levels of ROS below 5% of normal, the extent to which drug
targeting the NOX2 system may result in autoimmune side
effects is not clear. In the study of 287 patients described
earlier (148), the occurrence or severity of granulomatous
complications did not correlate well with the extent of re-
sidual NOX activity, which might suggest that autoimmune

Table 3. Genetic Origins of CGD

Subunit Function Gene
% of
cases Inheritance

NOX2 Catalytic CYBB 65 X-linked
p22phox Regulatory CYBA < 5 Autosomal recessive
p47phox Regulatory NCF1 30 Autosomal recessive
p67phox Regulatory NCF2 < 5 Autosomal recessive
p40phox Regulatory NCF4 Single

case
Autosomal recessive
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dysfunction may still occur when residual ROS levels are 5–
15% of normal. Additional models of partial loss of NADPH-
oxidase activity are needed to better assess the risk of side
effects, and some are presented next.

Autoimmune disease in mothers of CGD patients

Mothers of X-linked CGD patients show an increased in-
cidence of autoimmune disorders, including an SLE-like
syndrome and rheumatoid arthritis (177, 275). In kindreds
with X-linked CGD, 9% have one individual diagnosed with
lupus-like symptoms. A study of 19 CGD carrier mothers
revealed a high incidence of lupus-like symptoms limited to
cutaneous lesions, including 58% reporting photosensitive
skin rashes and 42% with mouth ulcers. In addition, 37%
showed joint pains (36). However, it is important to note that
random X inactivation (a.k.a. Lyonization) implies that fe-
male carriers will have two populations of neutrophils, one
that is entirely normal in its NADPH-oxidase activity, and a
second which is CGD-like, lacking NOX2 activity (177).
Depending on the developmental stage at which Lyonization
occurs, the effect on the cell lineage can be skewed and can
even give rise to mild CGD symptoms in female carriers.
Skewed cell lineage has been verified in CGD carriers using a
nitroblue tetrazolium (NBT) dye reduction test which stains
only neutrophils that actively produce ROS (124); while
normal individuals showed 98% NBT positive cells, female
carriers showed a wide range (16–88%) of positive cells.
Thus, while the ROS generation in CGD carriers is, on av-
erage, about half of normal, the average arises from normal
ROS generation in some cells and absent ROS generation in
others. Since CGD cells have grossly abnormal gene ex-
pression and immune function compared with normal cells, it
seems likely that the same subpopulation of phagocytes
which lacks ROS generation in the carrier state will closely
resemble a CGD phagocyte in terms of immune function,
apoptosis, etc., and that these severely compromised cells
will predispose the carrier to autoimmune disorders. With
regard to bacterial killing, neutrophils of CGD carriers, indeed,
show a range of functional abilities, from near normal to inac-
tivation almost as profound as that seen in CGD (235). While it
also would be of great interest to investigate whether there is a
correlation between the fraction of abnormal cells and the fre-
quency of autoimmune disease, to our knowledge, this has not
been done. Still, the presence of a severely compromised sub-
population of immune cells raises questions about the extent to
which the CGD carrier state can be used as an appropriate model
to predict the likelihood of autoimmune complications that
might arise from partial NOX2 inhibition. Due to these con-
siderations, in our opinion, the CGD carrier state is a poor model
for predicting NOX2 drug side effects. In the next few sections,
we consider inactivating (including partially inactivating) mu-
tations in animals and humans as predictive models for possible
complications of NOX2 inhibition.

Animal model association of autoimmune disease
with compromised NOX2-dependent ROS generation

Studies in rats and mice have provided important insights
into the physiological mechanisms by which a compromised
NOX2 system may increase the risk or severity of autoim-
mune disorders. In genetic studies comparing inflammation-
resistant E3 rats with Dark Agouti (DA) rats, which are

predisposed to developing pristane-induced arthritis and
other autoimmune conditions, the Pia4 region of the chro-
mosome correlated with susceptibility to or severity of in-
flammatory diseases (101, 253). Positional cloning identified
NCF1 (encoding p47phox) as the gene that was responsible
(204, 313). Depending on the activating agonist used, neu-
trophils from affected animals showed between 25% and
50% of normal O2

� - generation. Similarly, mice with a
mutation in NCF1 had no detectable oxidative burst and
showed enhanced collagen-induced arthritis as well as in-
creased severity of experimental autoimmune encephalo-
myelitis (106, 107). Some of the female NCF1 mutated mice
developed spontaneous severe arthritis without pristane.
Other mouse strains mutated in other NOX/phox genes also
show low or absent ROS generation, and are similarly sus-
ceptible to increased arthritis severity in various models (108).

Studies in rodents have provided possible insights into
the mechanisms by which a compromised NOX2 system
increases arthritis severity (108). In one study of arthritis-
susceptible rats, a higher content of reduced thiols on the T-
cell surface was seen and correlated with increased ability to
induce arthritis in adoptive transfer experiments (85). T cells
do not express the NOX2 system, so any oxidation of the T-
cell surface most likely results from an interaction with
phagocytes. It is difficult to understand, however, how the
redox state of thiols on the cell surface would fail to equili-
brate rapidly in a new host animal, and it seems unlikely that
such changes alone would account for the observed results.
Since it readily diffuses through membranes (197, 327), H2O2

can also, in theory, affect intracellular proteins in nearby
cells, for example by oxidizing regulatory low pKa thiols in
enzymes such as PTPs and in transcription factors (153), and
this might lead to reprogramming of protein expression pat-
terns and/or differentiation in target cells. In another study,
cellular changes were tracked in NOX2 knockout mice that
displayed aging-dependent spontaneous development of ar-
thritis (161). The NOX2 deficiency was associated with
changes in immune cell populations, with marked alterations
in subpopulations of myeloid cells as well as lymphomegaly,
splenomegaly, and increased levels of inflammatory cyto-
kines, including interferon-c and IL-17. Additional studies
are needed to fully elucidate the mechanism by which de-
creased NOX2 activity is linked to the development of ar-
thritis in rodents.

While rodent models have proved useful in dissecting
cell types and pathways involved in NOX2-ROS suppres-
sion of hyperinflammation, they do not provide an adequate
model for predicting whether therapeutic NOX2 inhibition
is likely to cause side effects related to autoimmune disor-
ders. In addition to the issue of species difference, most of
the models described earlier (including the aging-dependent
spontaneous arthritis model) used animals in which NOX2
activity was undetectable, providing a model for immuno-
logic changes in CGD but not for a partially or intermittently
inhibited state as would be seen with drug treatment. In the
DA rat models of arthritis, a polymorphism in the NCF1 gene
was associated with partial inhibition of NOX2-dependent
O2
� - generation, but the DA rat represents an animal that is

already genetically predisposed to arthritis. In addition,
strong arthritis-inducing stimuli such as pristane and collagen
were used to cause disease in many of the studies, and it is not
clear how relevant this will be to spontaneous arthritis in
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humans. Therefore, it is important to evaluate associations in
humans between decreased (but not absent) NOX2-depen-
dent ROS generation and autoimmune diseases.

Human disease associations with polymorphisms
in NOX2 and phox components

In rheumatoid arthritis patients, a subset of male patients
had a single nucleotide polymorphism in NCF4, the gene
encoding p40phox, at a higher frequency than that of the
general population (205). The polymorphism occurred in a
non-coding region in the beginning of intron 4, but the effect
on p40phox expression or NOX2 enzyme activity was not
reported. The results were interpreted as consistent with the
view that both multiple genes and also sex differences con-
tribute to disease progression in different subsets of rheu-
matoid arthritis patients. A separate study by the same group
reported a decreased risk of rheumatoid arthritis associated
with increased copy number of NCF1 (p47phox) (206). NCF4
has also been associated with Crohn’s disease (239). SLE
patients (120) had a higher incidence of the 389 Q/Q poly-
morphism in NCF2 (encoding p67phox) than the control
population, which has the more common 389 H/H allele. The
Q mutation resulted in a weaker association of p67phox with
the guanine nucleotide exchange factor Vav, resulting in 50%
lower Fc receptor-activated O2

� - generation. Similar to
rheumatoid arthritis, multiple genes contribute to the devel-
opment of SLE, and a change in a single gene is not sufficient
to cause the disease (123). Since the disease-associated allele
for both lupus and rheumatoid arthritis is rare in the general
population, estimates regarding the increased risk associated
with carrying the disease-associated allele are not reliable.
However, it is safe to say that in the absence of additional
predisposing genotypes, the likelihood of an individual with
such an allele developing either disease is low. Indeed, in a
study of the NCF2 polymorphism in China, no increased risk
of SLE was seen (336). To our knowledge, no polymor-
phisms in the genes for NOX2 or p22phox have been reported
to be associated with autoimmune or inflammatory diseases.

On the other hand, polymorphisms in the genes encoding
NOX2 (CYBB) or phox proteins are associated with benefi-
cial effects in some conditions. Williams–Beuren Syndrome
(WBS) is a developmental disorder that is marked by arterial
defects leading to hypertension. Deletion of one of the two
functional copies of NCF1 protects a subset of WBS patients
against hypertension, a finding that was recapitulated in a
mouse model of the disease using the NOX inhibitor apoc-
ynin (37, 146). However, in another study of two patients
with WBS and CGD who lacked any functional NCF1 gene,
there was no protection against hypertension, suggesting that
factors other (or in addition to) than NOX in vascular tissue
may be involved in hypertension (281).

These studies imply that while decreased ROS generation
from the NOX2 system correlates with certain autoimmune
diseases, this association seems to be less pronounced in
humans than it is in rodent models, and does not correspond
to the increased frequency of autoimmune diseases seen in
mothers of X-linked CGD patients. Therefore, in our opinion,
in the absence of additional predisposing genotypes, existing
evidence does not strongly support the hypothesis that partial
inhibition of NOX2 poses a significant increased risk of au-
toimmune disease.

Conclusions regarding the likelihood of side
effects from inhibiting the NOX2 system
with small molecule drugs

Based on available literature, it seems probable that side
effects from inhibiting the NOX2 system are not likely to be
common or severe, although, undoubtedly, this will vary with
the indication, duration of therapy, and drug dosage. The
most serious concern surrounding NOX2 inhibition has been
immunosuppression, resulting in life-threatening infections.
However, the studies summarized here indicate that the
NOX2 system has a large excess of microbicidal capacity,
and we suggest that only under continuous, long-term inhi-
bition of NOX2 would serious impairment of innate immu-
nity occur. Co-administration of antibiotics could provide a
further safeguard against life-threatening complications. The
possibility of triggering an autoimmune disorder is another
important consideration. While polymorphisms in human
phox genes have shown an association between decreased
NOX2 activity and autoimmune diseases and arthritis, these
diseases are associated with multiple susceptibility genes as
well as unknown environmental factors. Thus, the individual
risk of developing an autoimmune disease as a result of in-
hibiting any single susceptibility gene product such as NOX2
seems to be low. As with many drug therapies, some genet-
ically predisposed subpopulations will very likely be more
susceptible to side effects, and therapeutic benefits should
always be balanced against possible harmful effects.

Small-Molecule NOX Inhibitors: Progress and Prospects

Early attempts to inhibit the phagocyte NOX are summa-
rized in Cross (52), and subsequent progress is summarized in
Kim et al. (137). To date, however, only a limited number of
NOX2 small-molecule inhibitors have been identified and
very few of these appear to be promising for drug develop-
ment. This section summarizes those commonly used for
in vitro and in vivo studies, and describes recent progress
toward the development of inhibitors that may show eventual
clinical promise. Inhibitor structures are shown in Figure 2,
and their proposed sites of action where information is
available are mapped onto a diagram of the NOX2 system in
Figure 1.

NOX2 inhibitors commonly used as in vitro
(and occasionally in vivo) tools

Diphenylene iodonium. DPI is a non-drug like molecule
that was originally described as a general flavoprotein de-
hydrogenase inhibitor (179). Its mechanism of action in-
volves abstraction of an electron from reduced flavin (FAD or
flavin mononucleotide) to form a DPI radical, which then
reacts to form a covalent adduct with the flavin, inactivating
the coenzyme (201). Depending on its proximity to other
groups, covalent adducts may also form with other cofactors
such as the heme of NOX2 (68). This non-selective chemical
mechanism causes DPI to inhibit a large number of flavin-
dependent enzymes, including not only all of the NOX/
DUOX enzymes, but also NOS, xanthine oxidase, and at
higher concentrations mitochondrial respiration (8). NOX
enzymes represent one of the more sensitive targets of DPI,
which inhibits the neutrophil NOX2 system with an IC50 of
0.9 lM (92), while related analogs show IC50 values in the
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0.5–0.75 lM range. Its relative potency against NOX en-
zymes has led to wide and extensive use of DPI as a tool to
study the NOX enzymes in vitro (68). Toxicity limits the use
of DPI in vivo; the LD50 of DPI is < 10 mg/kg in rodents (83)
and long-term administration at a lower dose (1.5 mg/kg/day,
4–5 weeks) led to cardiomyopathy (50). Low doses of DPI
have been used, however, to support target validation of
NOX-dependent pathologies in vivo (3). Although DPI can be
considered a useful tool for in vitro NOX studies in situations
where isoform selectivity is not an issue, its off-target effects,
low solubility, and toxicity eliminate its development as a
drug candidate.

Apocynin. Also known as acetovanillone, apocynin oc-
curs naturally in certain plants (172) and was isolated from
the root of Canadian hemp in 1883 and Picrorhiza kurroa in
1971 (73, 310). Plants containing the compound have been
used as a traditional medicine, for example, for the treatment
of jaundice, asthma, liver, and heart problems (219, 286).
Since the early 1980s, apocynin has been extensively used as
both an in vitro and in vivo NOX inhibitor (274). There is

considerable debate about both its mechanism of action and
the active form of the molecule. Reportedly, the metabolism
of apocynin by myeloperoxidase generates the active di-
meric and trimeric species (282). A trimeric form inhibited a
NOX2 cell-free system with an IC50 of 30 nM, whereas
apocynin itself was ineffective (187). Thus, the effectiveness
of apocynin as an NOX2 inhibitor may be limited in vivo
to inflamed regions harboring neutrophils or other myelo-
peroxidase (MPO)-expressing inflammatory cells; other cells
and tissues such as vascular cells lack MPO and cannot
generate the active oligomers, suggesting that apocynin may
not inhibit NOX2 in such regions. The apocynin oligomer
inhibits the NOX2 system by covalently modifying Cys196
of p47phox, thus preventing its assembly with p22phox, as in
Figure 1 (187). Apocynin treatment of monocytes prevents
the translocation of p47phox to the membrane, decreases
NOX2-dependent ROS generation, and inhibits cycloox-
ygenase expression (16), which is proposed to account for
protective effects of the compound in some experimental
models of inflammation. While it blocked ROS-dependent
signaling in vascular cells, apocynin failed directly to block
O2

- production by NOX1, NOX2, or NOX4 over-expressed
in HEK293 cells. Rather, it interfered in assays detecting
H2O2 or �OH, indicating that in this setting apocynin func-
tions as an antioxidant (96).

Since it decreases markers of oxidative stress in vivo and is
non-toxic, apocynin has been extensively used in both chronic
and acute animal models of disease (including many of
the experiments described in previous sections), including
collagen-induced arthritis (106–108), in which apocynin was
found to have remarkable preventative properties when ad-
ministered before (but not after) collagen. Similarly, apocynin
has been shown to prevent inflammation in models of inflam-
matory bowel disease and asthma (138). In a model of stroke-
prone spontaneously hypertensive rats, apocynin significantly
decreased the occurrence of stroke (332). In addition, apocynin
has been investigated in a Phase 2 human clinical trial for
asthma (284), where it showed anti-inflammatory properties,
including a decrease in H2O2 in exhaled breath condensates.
Thus, while apocynin shows promise as an anti-inflammatory
molecule, it remains unclear as to whether its primary mode of
action in vivo involves the inhibition of NOX2, its antioxidant
properties, or both.

gp91(NOX2)ds-tat and other peptide inhibitors

Peptide-based inhibitors, by their nature, have the potential
advantage of being more specific and having fewer off-target
effects than small-molecule organic compounds, but they
have numerous problems as drugs having to do with bio-
availability, stability, delivery, and—over time—induction
of neutralizing antibodies. Since the 1990s, a variety of NOX-
targeted inhibitory peptides representing many regions of the
NOX subunit have been developed (47, 56, 57, 70, 71) and
employed in vitro, although to our knowledge, only one of
these has been tested in vivo (47). gp91(NOX2)ds-tat is an
18-amino-acid peptide that includes a part of the B-loop of
NOX2 that was designed to block the interaction between
NOX2 and its regulatory subunit p47phox. However, effects
on subunit assembly may be indirect, and we tentatively as-
sign its effect to interrupting the interface between the de-
hydrogenase domain and the transmembrane domain (Fig. 1),

FIG. 2. Structures of some commonly used NOX
inhibitors.
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based on structural considerations that place the B-loop at this
interface (117). NOX2ds-tat inhibited NOX2 with an IC50 of
0.74 lM, but did not inhibit NOX1 or NOX4 in cell lines
specifically expressing these isoforms (53). NOX2ds-tat also
inhibited O2

� - anion production from cultured endothelial
cells (169), human resistance artery smooth muscle cells (304),
and platelets (147). Moreover, the peptide showed protective
effects in ex vivo and in vivo models. NOX2ds-tat improved
acetylcholine-induced endothelium-dependent relaxation in
aortic rings from mice with renovascular hypertension (126)
and also suppressed angioplasty-induced neointimal prolifer-
ation in rat carotid artery (66).

Peptide-based inhibitors show a loss of bioactivity when
administered orally, as most peptides are rapidly inactivated
by gastrointestinal enzymes. The development of new tech-
nologies such as drug-encapsulating polymeric microparti-
cles or nanoparticles may enhance the efficacy of peptides
and other active pharmaceutical ingredients in the future (54).
However, at this time, the development of non-peptide small-
molecule NOX inhibitors seems more likely to result in
clinically useful drugs.

Other reported NOX inhibitors

Other chemical compounds have been reported to inhibit
NOX, but because of non-specific mechanisms of action or
unresolved questions regarding effectiveness, these com-
pounds are infrequently used as tools.

Phenylarsine oxide. This compound reacts covalently with
vicinal cysteine residues, which is thought to be its mechanism
of NOX2 inhibition. Specifically, phenylarsine oxide (PAO) at
50–100lM reacted with NOX2 subunit and prevented its as-
sembly with regulatory subunits; the compound failed to react
with the NOX2 subunit after assembly had already been trig-
gered (67). The administration of PAO (1 mg/kg intraperitoneal)
provided an anti-inflammatory action on both hind paw edema
induced by carrageenan and lung inflammation induced by li-
popolysaccharide inhalation (242). However, given its mecha-
nism of action, it is not clear whether beneficial effects were due
to the inhibition of NOX2 or an unknown off-target effect.

Aminoethyl-benzenesulfono-fluoride. Aminoethyl-
benzenesulfono-fluoride was originally characterized as an
irreversible serine protease inhibitor, and it was subse-
quently discovered to inhibit NOX2 activity in a cell-free
system when added before, but not after, enzyme activation.
Specifically, the reagent inhibited the binding of p47phox to
membranes containing NOX2/p22phox (60). The high
concentration required for inhibition (nearly 1 mM) as well
as off-target effects make this compound inappropriate for
cell or in vivo applications.

Celastrol. This triterpenoid natural product isolated from
the Chinese Thunder of God vine or Tripterygium wilfordii
has been used in traditional Chinese medicine for the treat-
ment of fever, chills, edema, and carbuncle (132). Recently,
Jaquet et al. (121) tested celastrol on various NOX isoforms,
and found that it acts as a general NOX inhibitor with some
selectivity for NOX1 and NOX2 (IC50 values of 0.4 and
0.6 lM, respectively) compared with NOX4 and NOX5 (both
*3 lM). For the NOX2 system, celastrol binds to p47phox,

disrupting its interaction with p22phox, but its mode of action
may differ between NOX1/2 and other NOX isoforms.

Fulvene-5. Long used as a dye, Fulvene-5 is an aromatic
molecule with high water solubility. It was recently reported
to inhibit NOX2 and NOX4 (218), and also blocked the
growth of endothelial tumors in mice (22). However,
Fulvene-5 inhibited these NOX isoforms by only *40–50%
at 5 lM and assay controls were not reported. Thus, addi-
tional studies are needed to determine whether in vivo effects
of this compound are a result of NOX inhibition or other
mechanisms.

Gliotoxin. Gliotoxin is a disulfide-containing mycotoxin
extracted from Aspergillus species that blocks NOX2 activity
in neutrophils (IC50 = 8 lM) (335). In a cell-free system,
pretreatment of membranes containing NOX2 prevents sub-
sequent activation, but the compound is ineffective post-
activation, suggesting modification of a site on NOX2 that is
blocked once the active complex is assembled (199). In ad-
dition, the compound inhibits phosphorylation of p47phox by
blocking the translocation of protein kinase C to the mem-
brane, suggesting multiple or complex modes of action (199).
The proposed chemical mechanism of the compound involves
dithiol exchange at cysteine residues of target proteins; si-
multaneous addition of the reducing agent dithiothreitol abo-
lished inhibition.

Other compounds. In addition to the compounds de-
scribed earlier, other plant-derived natural products—many
that have been used as traditional medicines—have been re-
ported to inhibit NOX enzymes (122). These include Honokio
(269, 307), Norathyriol (104), Abruquinone A (103), Mag-
nolol (113, 319), and Prodigiosin (193, 208). However, little is
known about their chemical or biochemical mechanisms of
action, and some (e.g., Norathyriol, Abruquinone A, Magno-
lol) appear to target signaling pathways that lie upstream of
NOX enzymes. Therefore, unless additional studies point to
more specific effects, these compounds cannot currently
be recommended as tools to study biological roles for NOX
enzymes.

Systematic discovery of NOX inhibitors

While the NOX inhibitors described earlier were discov-
ered fortuitously, the past decade has seen more systematic
approaches in the search for NOX inhibitors. Such ap-
proaches involve cell-free or cell-based activity screens or
screens involving disruption of protein–protein interactions
between NOX regulatory subunits that are essential for ac-
tivity. Practically speaking, cell-free activity assays are lim-
ited to the NOX2 system, due to the difficulty in obtaining
sufficient amounts of material of other NOX isoforms as well
as, in some cases, stability issues that make some isoforms
insufficiently robust for robotic screening efforts. In some of
these cases, binding assays can, in theory, be used as a sur-
rogate for activity. Activity or binding assays are then applied
to screening libraries of chemical compounds, which, de-
pending on the size of the library can be considered medium-
throughput or high-throughput screens, and that are carried
out in an automated manner. Hits are then subjected to a
series of counter-screens which are designed to establish the
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hits as true inhibitors and not artifacts, for example, com-
pounds that interfere with the screening assay itself. De-
pending on the potency of the initial hit, compounds may then
be subjected to an iterative process of chemical modification
and re-testing in order to develop compounds with enhanced
potency, improved isoform selectivity, improved solubility,
decreased toxicity, and increased bioavailability. The goal of
this process is to develop compounds not only as research
tools but also with properties that are appropriate for drug
development.

Screens using inhibition of NOX activity

VAS2870. This compound was found using a screen of
small molecules to identify inhibitors of NOX2, carried out
by the pharmaceutical company Vasopharm. The compound
inhibited O2

� - anion production with an IC50 of 11 lM in
neutrophil cell lysates and 2 lM in whole neutrophil assays
(301). The compound was subsequently characterized as an
inhibitor of all NOX/DUOX isoforms (326). However, in a
contradictory study, VAS2870 decreased ROS levels by an
unidentified mechanism unrelated to direct NOX2 catalytic
activity or subunit (84). The compound inhibited ROS gen-
eration and PDGF-mediated migration of VSMCs from rat
thoracic aorta, and also blocked ROS generation induced by
oxidized low-density lipoprotein in human umbilical vein
endothelial cells (285). In addition, VAS2870 decreased cell
growth and promoted apoptosis in a rat liver tumor cell line
that is dependent on NOX1 for growth (252). VAS2870 was
effective in decreasing tissue damage in a stroke model, an
effect that was attributed to the inhibition of NOX4 and not
NOX2 (140). Despite its effectiveness, recent studies showed
that VAS2870 given at the same doses that inhibit NOX
enzymes have off-target effects based on alkylation of cys-
teines by the benzyltriazolopyrimidine moiety of VAS2870;
one important off-target effect was shown to be alkylation of
cysteine residues in the ryanodine receptor 1 (290). There-
fore, at this time, while VAS2870 appears to be promising in
the treatment of certain conditions, its in vivo mode of action
is controversial, and additional studies are needed to clarify
its mechanism. Caution is, therefore, advised in its use as a
specific biochemical tool or in vivo probe.

ML171. ML171 and its phenothiazine analogues were
identified in a medium-throughput (16,000 compounds) ac-
tivity screen of NOX1-expressing HT-29 cells. ML171 and a
related 2-(trifluoromethyl)-phenothiazine were identified as
NOX1 inhibitors, and these and related compounds inhibited
NOX1 with IC50’s in the range of 0.2–1.0 lM, but showed
little inhibition of NOX2. However, in our hands (Smith
et al., Unpublished), ML171 also showed submicromolar
inhibition of NOX2 and NOX4 in cell-free and whole cell
L-012 assays, suggesting that the isoform selectivity of this
compound requires additional evaluation. This inhibitor was
used to elucidate the relevance of NOX1 in mechanisms of
cancer invasion, where it blocked the formation of functional
invadopodia in human colon cancer cells (88).

GKT136901 and related compounds. The pharmaceuti-
cal company Genkyotex used an NOX4-expressing cell line
in a high-throughput screen (HTS) of 136,000 compounds to
discover moderate potency pyrazolopyridine dione hits that

were then optimized using medicinal chemistry, resulting in
GKT136901 as a lead compound (151). In cell-free systems,
GTK136901 demonstrated high potency for both NOX4
(Ki = 165 nM) and NOX1 (Ki = 160 nM) and weaker inhibi-
tion of NOX2 (Ki = 1.5 lM) (262), making this compound a
dual inhibitor of NOX1/4. Counterscreening against panels of
biomedically important enzymes revealed no major off-tar-
get effects. In addition, the compound showed excellent
pharmacokinetic properties and good oral bioavailability.

GKT136901 and related molecules were highly effective
in in vitro assays of human fibroblast differentiation, epi-
thelial cell apoptosis, and epithelial-mesenchymal transition
(262). In addition, the compound was effective in preventive
and curative murine models of bleomycin-induced pulmo-
nary fibrosis, and in protection against diabetic nephropathy
(263). A related compound, GKT137831, has completed
Phase I clinical trials, where it has shown excellent safety and
pharmacokinetic properties. To our knowledge, this com-
pound is currently the most advanced NOX inhibitor in the
drug development pipeline. While showing great promise for
NOX4- and NOX1-related diseases, its lack of significant
NOX2 activity makes it inappropriate for the treatment of
most disease indications listed in Table 2.

Screens for disruption of subunit interactions

Ebselenandcongeners. NOX2 activation in vivo depends
on the binding of the C-terminal proline-rich domain (PRD)
of its heterodimeric partner p22phox to the regulatory subunit
p47phox (288). A HTS was designed to monitor this inter-
action via fluorescence polarization. In this screen (276), the
binding of a synthetic, rhodamine-labeled peptide corre-
sponding to the PRD of p22phox (rho-PRD) to recombinant
glutathione-S-transferase-p47-bis-SH3 showed increased
fluorescence polarization, while displacement of rho-PRD by
the unlabeled PRD caused decreased signals. Using this
principle, 230,000 compounds were screened; dose depen-
dencies were carried out among initial hits; and 55 com-
pounds were identified for confirmation in activity assays,
resulting in the identification of 3–5 bona fide inhibitors.
Among these was ebselen (272), a selenium-containing
compound that had previously been identified as a glutathi-
one peroxidase mimetic. Ebselen showed inhibition of cell-
free NOX2 activity with an IC50 value of 0.6 lM. Another hit
compound, Thr101, an analog of ebselen with sulfur in place
of selenium, was also inhibitory. Systematic modifications of
the structure identified many other potent (sub-micromolar
IC50 values) analogs containing either Se or S. These com-
pounds, in general, showed excellent selectivity for NOX2
and NOX1 compared with NOX4 and NOX5, and some
showed marked selectivity for NOX2 compared with NOX1.
For the NOX2 system, the compounds also inhibited the
translocation of p47phox to the membrane, consistent with its
targeting of the bis-SH3 domain of p47phox. While the se-
lenium-containing compounds have been shown to have a
number of off-target effects (257), the sulfur-containing
compounds show promise for selectively targeting NOX2
and possibly NOX1, and may prove useful as in vitro probes.

Phox-I1. The binding of Rac-GTP to p67phox is thought
to result in a conformational change in p67phox that allows
an interaction with and activation of NOX2 (185). A recent
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study (25) used an in silico screening approach to identify
potential inhibitors, which were then tested in an NOX2 ac-
tivity assay. A crystal structure of the p67phox-Rac1 complex
(158) was used to build a model of the Rac binding site on
p67phox. Docking simulations (189) were then used to virtu-
ally screen 340,000 compounds for potential binding to the
model binding site, and PhoxI1 was identified among the top
hits. Although the compound bound tightly to recombinant
p67phox with a Kd of* 100 lM, it inhibited NOX2-dependent
ROS generation in intact neutrophils with an IC50 of *10 lM,
suggesting that Rac2 competition for the binding site inside the
cell significantly decreases its in vivo potency. While this level
of potency is unlikely to be sufficient for drug development,
improved analogs may prove useful and are likely to show
significant isoform selectivity.

Future prospects

NOX2 is a potentially important and novel target for the
development of therapeutic agents for a range of serious
diseases shown in Table 2, but additional approaches are
needed to identify new isoform-selective small-molecule
inhibitors. The high degree of structural and catalytic ho-
mology within the catalytic core of various NOX isoforms
makes finding isoform-selective inhibitors a challenge. For
example, the NADPH binding site is highly conserved among
the NOX isoforms, suggesting that inhibitors targeting this
site may be non-selective for NOX isoforms. Other regions of
NOX subunits and their regulatory proteins, however, are
structurally unique among the isoforms. Most screening ap-
proaches to date have not taken advantage of isoform-specific
structural features, and, in some cases, have identified non-
selective inhibitors. Fortuitously, some general screens
have already identified promising inhibitors, some of which
show significant isoform selectivity and potential for drug
development. GKT136901, for example, shows selectivity
for NOX4 and NOX1, and has completed Phase 1 clinical
trials. While probing new chemical libraries using existing
screening methods will, undoubtedly, result in new hits, fu-
ture breakthroughs are likely to result from a combination of
techniques relying on ultra high-throughput and/or virtual
screening, while simultaneously taking advantage of iso-
form-specific structural features. Figure 1 shows a summary
of the locus of action, where known, of various inhibitors on
the NOX2 system. An inspection of Figure 1 reveals that
there are specific protein–protein interactions which could, in
principle, be targeted with new high-throughput assays. For
example, neither the binding of p67phox to p47phox nor the
interaction of p40phox (not shown) with its targets has been
exploited. Similarly, targeting the binding of p47phox or
NOXO1 to its phospholipid in the membrane is another
possible approach that could be used to block assembly of the
active complex. Since some of these interactions require
structural interactions that differ significantly among differ-
ent NOX isoform systems; such an approach may be selec-
tive, compared for example with targeting the NADPH
binding site.

In addition, improved ROS assay methods may help
identify new inhibitors. For example, currently, many of the
reagents used for screening ROS are non-selective and detect
a variety of other reactive molecules (e.g., NO, ONOO - , and
HOCl); while others show high background signals. This

results in a high false-positive rate, and is likely to miss
weaker but valid inhibitors that could provide the foundation
for novel chemical series.

NOX2 inhibitors show particular promise for the treat-
ment of inflammatory diseases, both acute and chronic. The-
oretical side effects include pro-inflammatory and autoimmune
complications, and while these should be considered in any
therapeutic program, in our opinion they do not appear to be
serious enough to eliminate NOX2 as a drug target, particularly
when weighed against the seriousness of many of the indica-
tions listed in Table 2. As with any first-in-class drug, proof of
concept for efficacy with minimal side effects is needed for the
acceptance of NOX2 inhibitors as therapeutic agents.
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Abbreviations Used

AD¼Alzheimer’s disease
ALI¼ acute lung inflammation
ALS¼ amyotrophic lateral sclerosis

Ang II¼ angiotensin II
ARDS¼ acute respiratory distress syndrome

CF¼ cystic fibrosis
CFTR¼CF transmembrane conductance regulator
CGD¼ chronic granulomatous disease
CIH¼ chronic intermittent hypoxia

COPD¼ chronic obstructive pulmonary disease
CYBA¼ gene name for p22phox
CYBB¼ gene name for NOX2

DA¼Dark Agouti
DPI¼ diphenylene iodonium

DUOX¼ dual oxidase
FAD¼ flavin adenine dinucleotide
GSH¼ glutathione, reduced

GSSG¼ glutathione, oxidized
GST¼ glutathione-S-transferase

H2O2¼ hydrogen peroxide
HOCl¼ hypochlorous acid
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Abbreviations Used (Cont.)

HTS¼ high-throughput screen
IL¼ interleukin

KC¼ keratinocyte-derived chemokine
LIRI¼ lung ischemia-reperfusion injury

MCP-1¼monocyte chemoattractant protein-1
MPO¼myeloperoxidase

MPTP¼ 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine

NADPH¼ nicotinamide adenine dinucleotide
phosphate, reduced form

NBT¼ nitroblue tetrazolium
NCF1¼ gene name for p47phox
NCF2¼ gene name for p67phox
NCF4¼ gene name for p40phox
NET¼ neutrophil extracellular trap

NF-kappa B¼ nuclear factor-kappa B
NMDA¼N-methyl-d-aspartate

NO¼ nitric oxide
NOS¼Nitric oxide synthase

NOX¼NADPH oxidase

O2
�-¼ superoxide

�OH¼ hydroxyl radical

ONOO-¼ peroxynitrite

PAO¼ phenylarsine oxide

PD¼ Parkinson’s disease

PDGF¼ platelet-derived growth factor

PH¼ pulmonary hypertension

phox¼ phagocytic oxidase

PRD¼ proline-rich domain

PTP¼ protein tyrosine phosphatase

ROS¼ reactive oxygen species

SLE¼ systemic lupus erythematosis

SOD¼ superoxide dismutase

TBI¼ traumatic brain injury

TNF¼ tumor necrosis factor

TTRhRen¼ transgenic mice overexpressing human renin

VSMC¼ vascular smooth muscle cell

WBS¼Williams-Beuren syndrome
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