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Abstract

Context—Renal cancer is a common urologic malignancy, and therapeutic options for metastatic 

disease are limited. Most clear cell renal cell carcinomas (ccRCC) are associated with loss of von 

Hippel-Lindau tumor suppressor (pVHL) function and deregulation of hypoxia pathways.
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Objective—This review summarizes recent evidence from genetic and biological studies 

showing that hypoxia and hypoxia-related pathways play critical roles in the development and 

progress of renal cancer.

Evidence acquisition—We used a systematic search for articles using the keywords hypoxia, 
HIF, renal cancer, and VHL.

Evidence synthesis—Identification of the tumor suppressor pVHL has allowed the 

characterization of important ccRCC-associated pathways. pVHL targets α-subunits of hypoxia-

inducible transcription factors (HIF) for proteasomal degradation. The two main HIF-α isoforms 

have opposing effects on RCC biology, possibly through distinct interactions with additional 

oncogenes. Furthermore, HIF-1α activity is commonly diminished by chromosomal deletion in 

ccRCCs, and increased HIF-1 activity reduces tumor burden in xenograft tumor models. 

Conversely, polymorphisms at the HIF-2α gene locus predispose to the development of ccRCCs, 

and HIF-2α promotes tumor growth. Genetic studies have revealed a prominent role for 

chromatin-modifying enzyme genes in ccRCC, and these may further modulate specific aspects of 

the HIF response. This suggests that, rather than global activation of HIF, specific components of 

the response are important in promoting kidney cancer. Some of these processes are already targets 

for current therapeutic strategies, and further dissection of this pathway might yield novel methods 

of treating RCC.

Conclusions—In contrast to many tumor types, HIF-1α and HIF-2α have opposing effects in 

ccRCC biology, with HIF-1α acting as a tumor suppressor and HIF-2α acting as an oncogene. The 

overall effect of VHL inactivation will depend on fine-tuning of the HIF response.

Patient summary—High levels of hypoxia-inducible transcription factors (HIF) are particularly 

important in the clear cell type of kidney cancer, in which they are no longer properly regulated by 

the von Hippel-Lindau protein. The two HIF-α proteins have opposing effects on tumor evolution.
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1. Introduction

Renal cell carcinoma (RCC) is the 14th most common malignancy and the third most 

common urologic cancer [1,2]. It has an age-standardized population incidence rate (per 100 

000) of 15.8 in men and 7.1 in women in the European Union and mortality rates of 6.5 and 

2.7, respectively [3]. Worldwide kidney cancer causes >100 000 deaths per year. A number 

of environmental risk factors for the development of renal cancer have been identified 

including smoking, obesity, hypertension, and diabetes [3]. Histopathologic classifications 

distinguish three major subtypes: clear cell RCC (ccRCC; 70–75%), papillary RCC (pRCC; 

10–16%), and chromophobe RCC (chRCC; 5%) [4]. Each subtype is associated with a 

separate hereditary syndrome, and together they account for 2–3% of all RCC cases. ccRCC 

is associated with von Hippel-Lindau (VHL) disease, which also features development of 

hemangioblastomas and pheochromocytomas. Patients with familial mutations in the c-Met 

proto-oncogene have a high risk of developing type 1 pRCC, whereas patients with germline 
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mutations in fumarate hydratase (FH) develop cutaneous and uterine leiomyomas and type 2 

pRCC (hereditary leiomyomatosis and RCC [HLRCC]). chRCCs and other tumors of the 

kidney are seen in patients with the Birt-Hogg-Dubé syndrome, which is caused by 

mutations in the folliculin tumor suppressor gene. In addition, other genes such as tuberous 

sclerosis 1 or succinate dehydrogenase B are also associated with syndromes that predispose 

to the development of RCC [5]. In accordance with the Knudson hypothesis, persons with 

each syndrome have a hypomorphic germline mutation in one allele of the relevant tumor 

suppressor gene. Somatic inactivation of the remaining wild-type allele within the cancer 

cells then “exposes” this dysfunctional gene product.

The majority of sporadic ccRCCs have somatic inactivation of both VHL alleles with loss of 

function of the VHL tumor suppressor protein (pVHL). About 60–80% of ccRCC cases 

display loss-of-function coding mutations in the VHL gene, chromosomal aberrations on 

chromosome 3p25 that affect the VHL locus, or hypermethylation of the VHL promoter [6–

8]. Re-expression of pVHL in VHL-defective RCC xenografts reduces tumor growth, 

confirming that VHL is a bona fide tumor suppressor gene [9].

The best-understood molecular function of pVHL is as the recognition component of an E3 

ubiquitin ligase complex that targets proteins for proteasomal degradation by tagging them 

with ubiquitin [10]. Recently, ccRCC-associated mutations in TCEB1, which encodes for 

the elongin C component of the VHL E3 ligase complex, have also been described in 

ccRCC, suggesting that this function is important in its role as a tumor suppressor [11]. To 

date, the best-characterized targets of pVHL are the α-subunits of the hypoxia-inducible 

transcription factors (HIFs; HIF-1α and HIF-2α, also known as EPAS1). Oxygen-dependent 

hydroxylation of HIFs at specific proline residues by prolyl hydroxylase (PHD) enzymes 

triggers binding of pVHL, ubiquitination, and subsequent proteasomal degradation [12–15]. 

Consequently, when oxygen is abundant, HIF is rapidly degraded. In a hypoxic environment, 

hydroxylation is suppressed, and HIF-α escapes degradation to form dimers with the 

constitutively expressed HIF-1β isoform, also called the aryl hydrocarbon receptor nuclear 

translocator (ARNT) protein. This complex is imported into the nucleus and binds DNA at 

the hypoxia response elements to activate the transcription of a wide variety of genes 

[16,17]. Similarly, loss of function of pVHL also leads to stabilization of HIF-α and 

subsequent “pseudohypoxic” transcriptional responses; therefore, loss of pVHL in RCC is 

tightly associated with the activation of HIF and its transcriptional consequences.

Interestingly, activation of HIFs also has been described in the context of the other major 

RCC subtypes [18–20]. The loss of FH or succinate dehydrogenase B, for example, leads to 

increased levels of the Krebs cycle intermediates fumarate or succinate, respectively, which 

in turn inhibit PHD-mediated hydroxylation of HIF-α by competing with the cosubstrate 2-

oxoglutarate [18,20,21]. In addition, many types of tumors frequently outgrow their blood 

supply, generating hypoxic regions that can activate HIF in both tumor and stromal cells, 

despite a functional degradation apparatus [22].

This review summarizes current knowledge of the effects of hypoxia and HIF in the context 

of RCC biology.
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2. Evidence acquisition

A systematic literature search in PubMed was conducted using the keywords or phrases 

hypoxia, HIF, VHL, renal cancer, and kidney cancer. Articles were selected by relevance and 

the novelty of their findings. In addition, key publications in the field of hypoxia research 

were added.

3. Evidence synthesis

3.1. VHL and hypoxia-inducible transcription factors

Loss of function of VHL due to gene deletions, inactivating mutations, or epigenetic 

silencing is observed in the vast majority of both familial and sporadic ccRCCs [6,8,23]; 

however, the inherited RCC syndrome VHL disease may be subclassified according to the 

relative risk of different types of tumor (Fig. 1). Type 1 VHL syndrome is associated with 

ccRCC and hemangioblastoma, whereas patients with type 2 VHL syndrome develop 

pheochromocytomas. Type 2 VHL syndrome is subdivided into type 2a 

(pheochromocytomas and hemangioblastomas but low risk of ccRCC), type 2b 

(pheochromocytomas, hemangioblastomas and ccRCC), and type 2c (pheochromocytomas 

only).

These phenotypes were found to have distinct VHL genotypes that had disparate effects on 

the HIF pathway [24–26]. Specifically, all ccRCC-associated mutations caused complete 

HIF dysregulation, whereas those associated with pheochromocytoma alone regulated HIF 

normally (although pheochromocytoma and paraganglioma have since been associated with 

somatic activating mutations at the EPAS1 locus). Although this correlation between ccRCC 

risk and HIF dysregulation is not absolute (some HIF dysregulation was seen with type 2a 

mutations at low risk of ccRCC), it further emphasizes the importance of the HIF pathway in 

the pathogenesis of ccRCC and suggests that both quantitative and qualitative windows of 

HIF activation are necessary for oncogenesis.

ccRCCs display a highly angiogenic and glycolytic phenotype, and several associated genes 

such as VEGFA or GLUT1 appear to be consistently overexpressed [27,28]. These genes 

have previously been shown to be inducible by hypoxia [29–31], but in ccRCC cells, this 

regulation is lost [15]. Importantly, reintroduction of functional pVHL in ccRCC cells 

restores their ability to downregulate hypoxia-inducible genes [15,32]. Moreover, pVHL 

binds directly to the master transcriptional regulators of hypoxic gene expression, HIF-1α 
and HIF-2α [14,15]. In complex with other components of the ubiquitin E3 ligase complex, 

elongin B, elongin C, cullin 2, and Rbx1 [10,33,34], pVHL catalyzes the ubiquitination of 

HIFs, which are then degraded by the proteasome [10,33,34]. This binding of pVHL to HIF-

α molecules (and hence the degradation of HIF-α) is dependent on the availability of 

molecular oxygen as well as iron and ascorbate. Enzymatic modification, leading to 

hydroxylation of HIF-α subunits at specific proline residues, allows pVHL to recognize and 

bind HIF-α [12,13]. Importantly, deletions or mutations in the VHL gene that lead to RCC 

development (types 1 and 2b) preferentially affect pVHL binding to HIF and are associated 

with high levels of HIF expression [24–26]. Furthermore, recent whole-genome and/or 

whole-exome sequencing in combination with RNA sequencing has identified mutations in 
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TCEB1, the gene that encodes elongin C in ccRCC (Fig. 2) [11]. All TCEB1 mutant tumors 

were VHL wild type, suggesting that the common role of these proteins in the E3 ubiquitin 

ligase complex is important for the development of ccRCC.

Functions of pVHL outside of the hypoxia-signaling pathway have also been described. The 

pVHL E3 ubiquitin ligase complex also targets protein kinase C and Rpb1 (a subunit of 

RNA polymerase 2) proteins for ubiquitination and proteasomal degradation [35,36]. 

Moreover, interactions of pVHL that do not result in polyubiquitylation have been described 

with fibronectin and collagen IV α2 [37,38]. VHL is also important for maintaining cell 

morphology and polarity by interacting with microtubules and promoting correct cilia 

formation, an important feature of epithelial cell integrity [39]; however, to date, the best-

described function for pVHL and the most clearly associated with the pathogenesis of 

ccRCC is the clearance of proline-hydroxylated HIF-α subunits from normoxic cells.

3.2. Hypoxia-inducible transcription factors

HIF was discovered in the course of investigating hypoxic erythropoietin (EPO) regulation 

[40,41]. Analysis of the EPO gene uncovered hypoxia-dependent binding of a transcription 

factor to a 3′ enhancer region that was responsible for hypoxic EPO messenger RNA 

(mRNA) induction. This factor was termed hypoxia-inducible factor 1 and is a heterodimer 

of two basic helix-loop-helix Per/ARNT/SIM (PAS)-domain proteins [42], namely, HIF-1α 
and ARNT (or HIF-1β).

Subsequent analyses revealed that two additional paralogues (HIF-2α and HIF-3α) are also 

present in human cells. HIF-2α is regulated similarly to HIF-1α by an oxygen-dependent 

mechanism [43,44]. This involves hydroxylation of the both HIF-1α and HIF-2α subunits at 

specific prolyl residues in the oxygen-dependent degradation domains by PHD1–3 

[12,13,45]. The hydroxylated residues are specifically recognized by pVHL, which 

facilitates binding of an E3 ubiquitin ligase complex. The enzymatic reaction depends on the 

availability of α-ketoglutarate (2-oxoglutarate), ascorbate, and iron as well as oxygen. Thus, 

in hypoxia, hydroxylation is impaired, and HIF-α subunits escape degradation. 

Hydroxylation of a specific asparagyl residue in the C-terminal transactivation domain 

(CTAD) of HIF-α by factor inhibiting HIF-1 (FIH1) reduces transcriptional activity and 

adds another layer of hypoxia-dependent gene regulation [46,47]. FIH1 has a different 

affinity for oxygen and is active at lower pO2 levels compared with the PHDs, potentially 

expanding the dynamic range of HIF activation [48]. Both HIF-1α and HIF-2α display 

different susceptibility to FIH1 and PHD-mediated prolyl hydroxylation. The CTAD of 

HIF-1α appears to be preferentially hydroxylated by FIH1 [48,49].

HIF-1α is widely expressed in human tissues, whereas the expression of HIF-2α is more 

restricted to specific cell types in some organs [50]. In the kidney, for example, HIF-1α 
expression can be detected predominantly in tubular cells. In contrast, renal interstitial 

fibroblasts, endothelial cells, and some glomerular cells show HIF-2α positivity [51,52]. 

Besides the regulation of EPO, analyses of other cis-acting regulatory sequences has 

revealed that hypoxic gene regulation by HIF is a common and widespread mechanism that 

includes the regulation of important genes for maintaining oxygen and metabolic 

homeostasis. The repertoire of HIF-dependent transcriptional targets includes genes that 

Schödel et al. Page 5

Eur Urol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regulate angiogenesis, glycolysis, chromatin remodeling, cell cycle, and even the oxygen-

sensing pathway itself. Indeed, genomewide analysis of the transcriptomic response to 

hypoxia coupled with HIF binding revealed that at least 500–1000 genes are under the 

control of HIF [17,53–57] in any particular cell type. Specifically, HIF is an activator (rather 

than repressor) of gene transcription, and its binding to chromatin can transactivate gene 

expression by interacting with promoters over long genomic distances (up to several hundred 

kilobases) [17,53,54]. Furthermore, the repertoire of HIF targets is highly cell-type 

dependent, with only a small number of HIF-regulated genes conserved across all cell types 

[58]. In the setting of pVHL-defective ccRCC cells, however, microarray studies have shown 

extensive overlap between VHL and hypoxia-regulated genes [59–61]. Subsequently, 

integration of HIF DNA-binding sites in the pVHL-defective 786-O RCC cell line with these 

transcriptomic profiles has revealed that a number of HIF targets are consistently 

overexpressed across a variety of ccRCC cell lines and tumors and thus are likely to be 

important for RCC biology [62,63].

3.3. HIF-1 versus HIF-2 in renal cancer

3.3.1. Functional evidence that hypoxia-inducible transcription factors are 
important for clear cell renal cancer—HIF-1α and HIF-2α subunits display distinct 

but overlapping target gene repertoires (Table 1) [64,65]; however, depending on tissue type 

and microenvironment, different expression profiles and contrasting effects on tumor 

biology can be observed [65,66]. This may result in part from differential patterns of DNA 

binding between the two isoforms. Nonetheless, a number of gene loci bind both HIF-1 and 

HIF-2, whereas only one isoform is able to effect transactivation. The functional relevance 

of the different HIF-α isoforms in the early stages of renal tumor development is not entirely 

clear. In the kidneys of patients with VHL disease, HIF-α isoforms are present in early 

precancerous lesions that lack functional pVHL [52,67,68]. This overexpression is 

accompanied by the induction of ubiquitous HIF target genes such as CA9 or GLUT1. 

Importantly, in immunohistochemical experiments, both α-isoforms could be detected in 

these lesions, whereas in normal tubular cells, only protein of the HIF-1α isoform was 

found, suggesting that the release of HIF-2α expression is an early event in pVHL-defective 

tubular cells [51,67,69]. The mechanisms are unclear but may involve reduced methylation 

of a CpG island at the EPAS1 locus following suppression of the DNA methyltransferase 3a 

[70]. In addition, the expression of more renal cancer–specific HIF targets such as the cell 

cycle oncogene cyclin D1 is also increased in these early foci [52,68].

In vitro studies using mouse embryo fibroblast cells or nonmalignant human tubular cells 

has shown that the immediate loss of VHL leads to senescence in these cells, indicating that 

additional genetic or biological events are necessary for malignant transformation of VHL-

mutant tubular cells [71]. This also becomes clear when considering that in kidneys of 

patients with VHL syndrome, hundreds of VHL-defective lesions can be detected but only a 

fraction progress to full-blown cancer [67,72]. Taken together, these studies suggest that 

biallelic loss of VHL in tubular cells primarily leads to stabilization of HIF-1α and de novo 

release of HIF-2α with increased expression of their target genes and that additional HIF-

dependent or independent events are necessary to overcome cell senescence and to promote 

tumor progression.
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The importance of the HIF-1α and HIF-2α subunits in renal tumor progression has been 

well studied. Overexpression of the HIF-2α subunit in RCC cells leads to an increased 

tumor burden in a mouse ccRCC-xenograft model [68,73]. This effect was restricted to 

HIF-2α proteins with intact DNA-binding domains, suggesting that transcriptional activity is 

essential for the tumor-promoting effect [74]. Similarly, short hairpin RNA–mediated 

knockdown of HIF-2α reduces tumor mass in the same model [74]. Opposing effects have 

been described for the HIF-1α isoform. A reduced tumor size was observed when HIF-1α 
protein was overexpressed, whereas knockdown of HIF-1α increased cell proliferation 

[68,75]. Similarly, inactivation of HIF-1α, but not HIF-2α, exacerbates renal cyst 

development following FH inactivation in a mouse model [76]. These observations led to the 

conclusion that in RCCs, HIF-2α has tumorigenic activity, whereas HIF-1α is 

antitumorigenic. This finding is surprising because overexpression of both HIF-α subunits 

(HIF-1α and/or HIF-2α) is usually associated with poor outcome in many other types of 

cancer including breast, colorectal, and prostate cancers [77]. Similarly, both HIF-α subunits 

promote tumor growth in many nonccRCC xenograft or autochthonous tumor models [77].

3.3.2. Genetic evidence for divergent roles of the hypoxia-inducible 
transcription factor subunits in renal cell carcinoma biology—Recently, further 

evidence has emerged for a divergent role of the HIF-α isoforms in the context of ccRCC. 

Immunohistochemical analysis of VHL-defective cancers has shown that although all VHL-

defective tumors express the HIF-2α isoform, many have inactivated HIF-1α [78]. These 

workers classified ccRCC into three groups: those with wild type VHL, those with defective 

pVHL and expressing both HIF-1α and HIF-2α together, or those with defective pVHL and 

expressing HIF-2α exclusively. In this study, cancers with exclusive HIF-2α expression 

were associated with a larger tumor volume, although no other clinical parameter showed 

significant association.

Genomic analyses of renal tumors have revealed that deletions in a region of chromosome 

14 that harbors the HIF-1α gene are a common feature of RCC [75,79]. In keeping with this 

finding, some commonly used RCC cell lines (eg, 786-O and A498) have lost expression of 

full-length HIF-1α [75]. Restoring expression of wild-type HIF-1α in these cells resulted in 

reduced xenograft tumor growth. This re-expression of HIF-1α also resulted in the 

transcriptional activation of established HIF-1α target genes such as BNIP3, PGK1, HK1, 

and TP11 [75]. This transcriptional signature may contribute to the protective effects of 

HIF-1α. Alternatively, HIF-1α could outcompete HIF-2α from shared DNA-binding sites 

and oppose the action of HIF-2α at gene loci at which HIF-1α is inactive. Together with the 

findings already noted, this suggests that in the context of RCC, HIF-1α acts a tumor 

suppressor. The importance of HIF-2α in RCC biology became more apparent through 

recent genomewide screens. A genomewide association study (GWAS) revealed that DNA 

polymorphisms in the first intron of the EPAS1 gene (coding for HIF-2α) are associated 

with an increased risk of developing RCC [80,81]; however, to date, the functional 

consequences of these single-nucleotide polymorphisms regarding regulation of the EPAS1 
gene or tumor development have not been resolved, although cross-reference with ENCODE 

data sets suggests that the polymorphisms are in regulatory regions of the EPAS1 gene. In 

addition, several other loci were associated with RCC development in these GWASs. The 
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strongest association was found for polymorphisms in a gene-poor region on chromosome 

11 that were protective for RCC development [80]. These associations were reproduced in 

several other studies [82–84]. Integrating transcriptomic analyses of the HIF response and 

genomewide HIF DNA-binding data revealed that the locus on chromosome 11 

corresponded to an HIF-binding enhancer of cyclin D1 expression, a well-characterized 

oncogene regulated by HIF exclusively in the context of VHL-defective RCC [63]. 

Interestingly, although both HIF-α subunits have overlapping DNA-binding profiles and can 

bind to the 11q13.3 enhancer, cyclin D1 is exclusively regulated by the HIF-2α subunit, 

suggesting postbinding mechanisms of transcriptional regulation. Cyclin D1 was also 

induced in early VHL-defective lesions in kidneys from patients with VHL disease, 

implying a functional role of the VHL–HIF-2α–cyclin D1 axis in early RCC development 

[68].

Recently, genomewide exome-sequencing analyses have revealed that the chromatin-

modifying enzymes lysine (K)-specific demethylase 6A (UTX), lysine (K)-specific 

demethylase 5C (JARID1C), SET domain containing 2 (SETD2), and polybromo 1 

(PBRM1) and the nuclear deubiquitinase BRCA1 associated protein-1 (BAP1) are 

frequently mutated in ccRCC [85–88]. PBRM1 has the highest mutation rate, with a 

frequency of approximately 40% in ccRCC samples, followed by BAP1, which has a 

mutation frequency of approximately 14% [87,88]. Together with the finding that the 

mutational landscape of ccRCC displays a pronounced intratumoral and metastatic 

heterogeneity, the current concept of tumorigenesis involves inactivation of pVHL as the 

initiating step, followed by additional hits in the above-mentioned genes to further promote 

tumor growth (Fig. 2) [89,90]. How mutations in chromatin-modifying enzymes interact 

with the pseudohypoxic response in VHL-defective cells is not fully understood. Knockout 

of PBRM1 in the PBRM1 competent but VHL-defective RCC cell line 786-O increased cell 

proliferation [88]. The HIF response is dependent on open chromatin configuration, and HIF 

binding is sensitive to CpG methylation [17,91]. Consequently, it is conceivable that 

disturbances in chromatin accessibility caused by the loss of chromatin modifier activity 

could influence the HIF response in a VHL-defective background. In line with this 

hypothesis, the first studies examining the function of JARID1C and SETD2 found a 

significant impact of these genes on the HIF response [92,93]. Suppression of JARID1C, a 

histone-3 lysine-4 trimethyl (H3K4me3) demethylase, in 786-O renal cancer cells restored 

H3K4me3 levels at promoters and mRNA expression of HIF-target genes such as IGFBP3. 

Interestingly, JARID1C was also shown to be an HIF-target gene, adding more evidence to a 

functional link between HIF and chromatin configuration. Simon et al found that differences 

in chromatin accessibility are a major factor influencing ccRCC biology [93]. Moreover, 

integration of HIF binding sites revealed that tumor-specific open chromatin strongly 

associates with HIF binding. The authors found that mutations in the SETD2 gene, coding 

for a methyltransferase responsible for H3K36 trimethylation, leads to loss of H3K36me3 

and increases chromatin accessibility, as determined by formaldehyde-assisted isolation of 

regulatory elements and DNA methylation assays. In a recent study, combined genetic 

deletion of BAP1 and VHL in the mouse resulted in increased tumor development [94]. 

Interestingly, BAP1 or VHL tubular-specific knockout mice developed a cystic renal 

phenotype and renal failure, but only the combined knockout led to the appearance of 
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tumors. HIF target genes were induced in the VHL-defective background; however, whether 

HIF is relevant for tumor development or whether BAP1 loss and VHL loss cooperate in 

regulating HIF target genes in this model has not been addressed. These findings from 

pangenomic studies underpin the important role of HIF-α in ccRCC development. Besides 

the initial loss of VHL, tumor-acquired defects in HIF-1α are frequent events in ccRCCs, 

and germline polymorphisms in the EPAS1 gene are associated with the occurrence of 

ccRCCs. Newly identified tumor suppressor genes are mainly associated with chromatin-

modifying processes, and recent studies confirm that JARID1C and SETD2 functions are 

linked to the HIF response in ccRCCs [92,93].

3.4. Regulators and interacting proteins of hypoxia-inducible transcription factors in clear 
cell renal cell carcinoma

Each HIF isoform has a different transactivation capacity, in part due to different sensitivity 

of the C-terminal transactivation domain to hydroxylation by FIH1 [48,49], with HIF-1α 
being more sensitive to inactivation by FIH1. Interestingly, knockdown of FIH1 increased 

HIF-1α transcriptional activity and apoptosis of RCC cells [95]. This indicates that in RCC, 

the presence of FIH1 can contribute to reduced HIF-1α activity and promote cancer cell 

survival. In contrast, and in keeping with previous findings that HIF-1α acts as a tumor 

suppressor in ccRCC, low expression of FIH1 in the nuclei of RCC specimens correlated 

with poor overall survival [96].

HIF-3α (also called inhibitory PAS domain [IPAS]) has been identified as another paralogue 

of HIF-1α [44,97]. Although some HIF-3α splice variants lack an oxygen-dependent 

degradation domain and thus are not directly regulated by pVHL, HIF-3α is itself an 

HIF-1α target gene and so may be indirectly regulated by pVHL [44,97]. Splice variants 

lacking a transactivation domain can act as a dominant negative by competing with HIF-1α 
and HIF-2α for binding to HIF-1β binding. This adds an additional layer of negative 

feedback to hypoxic gene regulation because HIF-3α is a potential HIF-dependent inhibitor 

of the HIF pathway [98].

Maynard et al detected reduced levels of HIF-3α mRNA in ccRCC samples compared with 

normal kidney [98]; however, in ccRCC sections with high levels of HIF-1α, an increased 

signal for HIF-3α protein was observed [99]. Overexpression of the HIF-3α isoform in RCC 

cells led to reduced expression of HIF target genes and delayed tumor growth in a xenograft 

model [100]. Consequently, HIF-3α appears to be an HIF-1α–specific target that primarily 

interferes with both HIF-1α– and HIF-2α–dependent transcription to reduce hypoxic gene 

expression. Given that its expression seems protective in the context of ccRCC biology, it 

seems likely that its effect in antagonizing HIF-2α outweighs its effect on HIF-1α. 

Furthermore, a recent report suggests that some HIF-3α splice variants retain oxygen-

dependent regulation and the ability to directly bind DNA and transactivating gene 

expression [101]. To date, however, further evidence of a functional role of HIF-3α in the 

context of RCC biology and data gained from a larger RCC cohort is lacking.

In addition to directly controlling pathways relevant to tumor metabolism and survival via 

transcriptional activation, HIF-α subunits also interact with a number of important 

oncogenes, including regulation of MYC activity by HIF. The MYC gene locus is commonly 
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amplified in ccRCCs, and the MYC protein contributes to tumor cell biology by regulating 

the expression of genes that control cell cycle progression and cell metabolism [7,102], 

thereby enhancing cell proliferation and growth. Gordan et al showed that, again, the 

different HIF-α subunits influence MYC activity in opposing ways [78,103,104]. HIF-1α 
reduces MYC transcriptional activity at a number of different levels. First, it can bind to SP1 

and thus remove MYC from target gene promoters. Second, HIF-1α can disrupt binding of 

MYC to its binding partners MAX and MIZ1. Third, HIF-1α induces MAX interactor 1 

(MXI1) expression, which inhibits expression of MAX target genes. Finally, HIF-1α 
enhances MYC degradation under chronic hypoxia. Consequently, HIF-1α is an antagonist 

of MYC-mediated processes including cell proliferation and survival. In contrast, HIF-2α 
enhances MYC activity in malignant cells and, in doing so, increases the expression of cell 

cycle regulators such as cyclin D2. The interaction of HIF-2α and MYC pathways appeared 

to be highly relevant for genomic integrity and resistance to replication stress in tumor cells 

[78].

TP53 mutations have also been observed in ccRCC [7]; however, compared with most types 

of cancer, they are relatively infrequent, suggesting that other mutations somehow inactivate 

the p53 pathway. Indeed, HIF-2α can inhibit p53 phosphorylation, thereby reducing its 

activity. Conversely, HIF-2α knockdown leads to increased p53 protein and activity 

promoting cell cycle arrest, increased cell death, and reduced colony formation [105]. In 

ccRCC samples, HIF-2α–positive tumors showed reduced yH2AX, pS15-p53, and p53 

target gene levels. Interestingly, PBRM1 has also been identified as a gene with inactivation 

that rescues p53-dependent senescence [106].

In summary, genetic and functional data indicate opposing actions of HIF-1α and HIF-2α in 

ccRCC biology. This finding is further corroborated by differential interactions of each HIF-

α isoform with other regulators of the hypoxic pathway or other crucial oncogenes.

3.5. The role of HIF on clinical outcome and therapeutic approaches in renal cancer 
patients

Although experimental work would suggest that HIF isoforms are important predictive 

factors for ccRCC development and progression, evidence from large cohort studies on HIF 

expression and its association with clinical outcome is sparse. Biswas et al found that high 

tumor expression of either isoform alone was associated with worse patient survival 

(although only HIF-1α reached statistical significance); paradoxically, high expression of 

both HIF-1α and HIF-2α together did not significantly alter patient survival [107]. 

Consistent with earlier data, HIF-2α expression correlated with increased tumor volume 

[78,107]. Interestingly, expression of HIF target genes such as CCND1 or GLUT1 did not 

predict outcome in this study. Similarly, in a larger cohort of 357 patients, high HIF-1α 
expression was correlated with a worse outcome in patients with metastatic disease [108]. In 

contrast, in a cohort of 92 patients, high HIF-1α expression determined by Western blotting 

showed favorable overall survival [109]. In neither study was HIF-2α level measured.

Common targeted therapies used to treat ccRCC include inhibitors of both the vascular 

endothelial growth factor (VEGF) pathway and the mammalian target of rapamycin (mTOR) 

pathway. Because VEGFA is a well-characterized target gene of HIF and mTOR regulates 
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HIF translation, both therapeutic approaches interfere with the HIF signaling pathway [110]. 

Consequently, one might hypothesize that the level of HIF expression in tumors would 

predict response to these targeted therapies. Pazopanib, a multikinase inhibitor of VEGF and 

platelet-derived growth factor receptors and c-Kit, has been shown to prolong progression-

free survival in patients with metastatic disease [111]; however, Choueiri et al found no 

correlation between HIF expression (HIF-1α or HIF-2α) and either the overall response rate 

or progression-free survival with pazopanib [112]. Similarly, in another study surveying 123 

patients with progressive disease who were receiving sunitinib, sorafenib, axinitib, or 

bevacizumab, neither VHL inactivation nor HIF status had any effect on response rate [113]. 

These findings are not surprising, given that attempts to correlate VHL status with patient 

prognosis in the era before targeted therapies led to heterogeneous findings [114–117]. 

Despite the lack of correlation between perturbations in the VHL–HIF axis and clinical 

outcome, experimental data strongly suggest that the HIF pathway plays an essential role in 

ccRCC tumor progression and metastasis and that this can be further exploited for 

therapeutic approaches. Recently, Vanharanta and colleagues provided evidence for an 

epigenetic switch in PRC2-dependent H3K27 trimethylation affecting the HIF-dependent 

regulation of the important target genes CXCR4 and CYTIP [118,119]. These findings fit 

with the data from genetic studies that assigned a large proportion of tumor progression to 

epigenetic changes and the findings that chromatin-modifying enzymes are targets of HIF 

themselves [53,120,121]. How these pathways could be used for designing novel drugs 

active against ccRCC is currently not known. In another approach, Chan et al used a 

synthetic lethality screen to identify putative therapeutic targets in VHL-defective ccRCC 

[122]. This work identified GLUT1 as an essential component of tumor cell survival in 

ccRCC. Pharmacologic inhibition of this transporter led to decreased tumor growth in a 

xenograft model. The same group also identified HIF-induced expression of the AXL 

receptor tyrosine kinase as an aggressive driver of MET-dependent metastasis in RCC [123]. 

Inhibition of the AXL signaling pathway reduced metastatic colonization to the lung in a 

xenograft model. These findings further confirm the importance of the HIF pathway for 

tumor progression in ccRCC and its potential for novel drug development.

3.6. The role of hypoxia-inducible transcription factors in other renal cell carcinoma 
entities

Although HIFs have been most extensively studied in the context of VHL-defective ccRCCs, 

increasing evidence suggests that they play additional roles in other RCC subtypes such as 

pRCC or chRCC. The activation of HIF in kidneys of patients with HLRCC has been 

described [18]. Accumulation of the Krebs cycle intermediate fumarate in these patients 

leads to competitive inhibition of PHD activity and stabilization of HIF-α subunits. In a 

mouse model, FH deficiency leads to the development of cysts as well as activation of the 

HIF pathway [21]; however, subsequent analysis has revealed that cyst formation in this 

model is unexpectedly increased by inactivation of HIF-1α and that other pathways might be 

crucially involved in FH-related pRCC [76]. In human cells, the metabolic shift in FH-

deficient cells seems to activate pathways that promote oncogenic cell behavior, including 

HIF-α [124]. HIF activation has also been described in cells and tissue from patients with 

the Birt-Hogg-Dubé syndrome [19,125]. These tumors mainly express HIF-2α; however, 

evidence is sparse with regard to the significance of HIF in tumorigenesis or tumor 
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progression in the context of chRCC outside of potential hypoxic activation similar to other 

nonrenal cancer types.

4. Conclusions

Functional and genetic evidence tightly links the hypoxia-signaling pathway with ccRCCs. 

In experimental settings, HIF-α paralogues HIF-1α and HIF-2α have opposing effects on 

tumor development and progression. HIF-1α acts as a tumor suppressor, whereas HIF-2α 
has oncogenic potential. So far, this dichotomy is unique to ccRCC tumors. HIF stabilization 

is an early event in cancerous renal lesions. Multiple secondary events in RCC evolution can 

affect HIF function. These events include genetic loss of the protective HIF-1α isoform, 

interaction with other oncogenic pathways such as the cell cycle, or additional mutations in 

genes with tumor-suppressing or -promoting functions. These mutations predominantly 

affect genes associated with chromatin-modifying functions, suggesting that epigenetic 

integrity is commonly altered in ccRCC. Because HIF's action as a transcription factor is 

dependent on chromatin accessibility at its hypoxia response element motifs, it seems 

reasonable that epigenetic changes strongly affect the HIF pathway. The net effect of tumor-

repressing and -promoting events influences whether single lesions can outgrow their 

environment and progress to full-blown cancer; therefore, it would be interesting to further 

understand which events in early lesions lead to tumor progression.

Current therapies for advanced ccRCC already target components of the HIF pathway such 

as HIF translation (mTOR inhibitors) or the function of important HIF target genes (VEGFA 

inhibitors). The specific contribution of each HIF-α isoform with respect to tumor treatment 

is not clear. Furthermore, these therapies are of limited efficacy and carry significant 

toxicity. Further research is required to precisely parse the effects of the different HIF-α 
isoforms on each aspect of tumor progression (eg, proliferation, invasion, angiogenesis, and 

metastasis) to guide novel therapeutic strategies.
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Take-home message

In contrast to many tumor types, HIF-1α and HIF-2α have opposing effects on clear cell 

renal cell carcinoma biology, with HIF-1α acting as a tumor suppressor and HIF-2α as 

an oncogene. The overall effect of VHL inactivation will depend on fine-tuning of the 

hypoxia-inducible transcription factor response.
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Fig. 1. 
Subtypes of von Hippel-Lindau disease. Phenotypic characteristics correlate with the degree 

of hypoxia-inducible transcription factor dysregulation.

HIF = hypoxia-inducible transcription factors; VHL = von Hippel-Lindau protein.
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Fig. 2. 
The hypoxia-inducible transcription factor (HIF) pathway in clear cell renal cancer. In 

normal epithelial cells, ubiquitination of HIF-α by the E3 ubiquitin ligase leads to 

degradation via the 26 proteasome. In precancerous cells, defective tumor suppressor pVHL 

or elongin C results in stabilization of both HIF-α isoforms. Subsequent deletions of HIF-1α 
and/or chromatin-modifying enzymes as well as somatic mutations in HIF DNA-binding 

sites can affect the transcriptional program of HIF and eventually lead to a tumorigenic 

phenotype.

eloB = elongin B; eloC = elongin C; HIF = hypoxia-inducible transcription factors; VHL = 

von Hippel-Lindau protein.
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Table 1

Selected hypoxia-inducible transcription factor target genes in clear cell renal cell carcinoma

Gene Reported function HIF-1/HIF-2 Reference

VEGFA Angiogenesis HIF-1/HIF-2 [126]

CXCR4 Chemotaxis HIF-1/HIF-2 [118]

CAXII pH regulation HIF-1/HIF-2 [126]

SLC2A1 Glucose transport HIF-1/HIF-2 [126]

mir210 Mitochondrial function HIF-1/HIF-2 [127]

GAS6/AXL Metastasis HIF-1/HIF-2 [123]

CDCP1 Metastasis HIF-1/HIF-2 [128]

JMJD1A Histone demethylation HIF-1/HIF-2 [55]

JARID1C Histone demethylation HIF-1/HIF-2 [92]

BNIP3 Apoptosis HIF-1 [68]

HK2 Glycolysis HIF-1 [126]

PFK Glycolysis HIF-1 [126]

ALDOA Glycolysis HIF-1 [126]

PGK1 Glycolysis HIF-1 [126]

LDHA Glycolysis HIF-1 [126]

FBP1 Gluconeogenesis HIF-1 [129]

SPAG4 Cell migration HIF-1 [130,131]

CAIX pH regulation HIF-1 [68,132]

FYN Metastasis HIF-1 [128]

HIG2 Lipid storage HIF-1 [133]

Plin2 Lipid storage HIF-2 [126]

CCND1 Cell cycle control HIF-2 [68]

MMP1 Matrix remodeling HIF-2 [134]

TGFα Inflammation HIF-2 [68]

SK1 Invasion, angiogenesis HIF-2 [135]
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