Structure and function of chromophores in R-Phycoerythrin at 1.9 A resolution

Proteins. 1999 Feb 1;34(2):224-31.

Abstract

The crystal structure of R-Phycoerythrin (R-PE) from Polysiphonia urceolata has been refined to a resolution of 1.9 A, based on the atomic coordinates of R-PE determined at 2.8 A resolution, through the use of difference Fourier method and steorochemistry parameters restrained refinement with model adjustment according to the electron density map. Crystallographic R-factor of the refined model is 0.195 (Rfree = 0.282) from 8-1.9 A. High resolution structure of R-PE showed precise interactions between the chromophores and protein residues, which explained the spectrum characteristic and function of chromophores. Four chiral atoms of phycourobilin (PUB) were identified as C(4)-S, C(16)-S, C(21)-S, and C(20)-R. In addition to the coupling distances of 19 A to 45 A between the chromophores which were observed and involved in the energy transfer pathway, high resolution structure of R-PE suggested other pathways of energy transfer, such as the ultrashort distance between alpha140a and beta155. It has been proposed that aromatic residues in linker proteins not only influence the conformation of chromophore, but may also bridge chromophores to improve the energy transfer efficiency.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Crystallography, X-Ray
  • Models, Molecular
  • Molecular Sequence Data
  • Molecular Structure
  • Phycobilins
  • Phycoerythrin / chemistry*
  • Protein Conformation
  • Rhodophyta / chemistry*
  • Urobilin / analogs & derivatives

Substances

  • Phycobilins
  • Phycoerythrin
  • Urobilin
  • phycourobilin