Oxidant stress impaired DNA-binding of estrogen receptor from human breast cancer

Mol Cell Endocrinol. 1998 Nov 25;146(1-2):151-61. doi: 10.1016/s0303-7207(98)00161-0.

Abstract

Full-length (67 kDa) immunoreactive estrogen receptor (ER) extracted from a third of untreated ER-positive primary breast tumors appears unable to bind to its cognate estrogen response element (ERE). We have observed partial reversibility of this ER DNA-binding defect upon treatment of these tumor extracts with excess thiol reducing agent (DTT), suggesting that ER DNA-binding is subject to redox modulation as is reported for other zinc-finger proteins and transcriptional activators. Treatment of recombinant ER DNA-binding domain (ER-DBD) or ER-enriched extracts from CHO(ER) and MCF-7 cells with thiol-reacting oxidants (diamide, iodosobenzoate, H2O2) or alkylator (iodoacetamide) produces a dose-dependent loss in ER DNA-binding capacity. Thiol-specific oxidative loss in ER DNA-binding is fully reversible by DTT reduction, unlike the defect caused by thiol-specific alkylation. Circular dichroism spectrometry shows that both forms of treatment substantially modify ER secondary structure, inducing loss of alpha-helical content within the ER-DBD that is reversible after thiol oxidation but not after thiol alkylation. Oxidant (H2O2, menadione) exposure of cultured CHO(ER) or MCF-7 cells impairs the ability of endogenous ER to bind DNA and transactivate an ER-responsive reporter gene (ERE-tk-CAT), demonstrating that extracellular redox stress can modulate intracellular ER function. Since these thiol-specific oxidant and alkylator treatments have no significant effect on either recombinant ER ligand-binding or intracellular immunoreactive ER content, our findings suggest that DNA-binding and transactivation are the most sensitive intracellular ER functions impaired by oxidant stress in some ER-positive human breast tumors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alkylating Agents / pharmacology
  • Animals
  • Binding Sites
  • Breast Neoplasms / chemistry*
  • CHO Cells
  • Cricetinae
  • DNA / metabolism*
  • Diamide / pharmacology
  • Humans
  • Hydrogen Peroxide
  • Iodoacetamide / pharmacology
  • Oxidants / pharmacology
  • Oxidative Stress*
  • Receptors, Estrogen / chemistry
  • Receptors, Estrogen / genetics
  • Receptors, Estrogen / metabolism*
  • Recombinant Proteins / metabolism
  • Sulfhydryl Reagents / pharmacology
  • Transcriptional Activation
  • Transfection
  • Tumor Cells, Cultured

Substances

  • Alkylating Agents
  • Oxidants
  • Receptors, Estrogen
  • Recombinant Proteins
  • Sulfhydryl Reagents
  • Diamide
  • DNA
  • Hydrogen Peroxide
  • Iodoacetamide