The p53 tumour suppressor protein is a transcriptional activator, which can induce cell cycle arrest and apoptosis. p53 Gene mutations occur in more than 50% of all human tumours. Reintroduction of wild-type p53 but also of oligomerisation-independent p53 variants into tumour cells by gene transfer methods has been considered. We have investigated the biological properties of two carboxy-terminal deletion mutants of p53, p53 delta 300 (comprising amino acids 1-300) and p53 delta 326 (amino acids 1-326), to evaluate their potential deployment in gene therapy. Transactivation was measured in transiently transfected HeLa and SKBR3 cells. Both monomeric variants showed reduced activities compared with wild-type p53. Individual promoters were differently affected. In contrast to wild-type p53, monomeric variants were not able to induce apoptosis. We also provided wild-type p53 and p53 delta 326 with tetracycline-regulated promoters and stably introduced these constructs into Saos2 and SKBR3 cells. Upon induction, wild-type p53 expressing cells, but not p53 delta 326 expressing cells underwent apoptosis. Consistently, only wild-type p53 expressing cells accumulated p21/waf1/cip1 mRNA and protein and showed increased bax, Gadd45 and mdm2 mRNA. Neither wild-type p53 nor p53 delta 326 repressed the transcription of the IGF-1R gene in these cell lines. We conclude that the transactivation potential of monomeric, carboxy-terminally truncated p53 is not sufficient to cause induction of the endogenous target genes which trigger apoptosis.