The purpose of this study was to examine the linearity of summation of the forces produced by the stimulation of different combinations of type identified motor units (MUs) in the cat peroneus longus muscle (PL) under isometric conditions. The muscle was fixed at its twitch optimal length, and the tension produced by the single MU was recorded during 24- and 72-Hz stimulation. The summation analysis was first carried out for MUs belonging to the same functional group, and then different combinations of fast fatigable (FF) MUs were added to the nonfatigable slow (S) and fatigue resistant (FR) group. The tension resulting from the combined stimulation of increasing numbers of MUs (measured tension) was evaluated and compared with the linearly predicted value, calculated by adding algebraically the tension produced by the individual MUs assembled in the combination (calculated tension). Tension summation displayed deviations from linearity. S and FR MUs mainly showed marked more than linear summation; FF MUs yielded either more or less than linear summation; and, when the FF units were recruited after the S and FR MUs, less than linear summation always occurred. The magnitude of the nonlinear summation appeared stimulus frequency dependent for the fatigable FF and FI group. The relationship between measured tension and calculated tension for each MU combination was examined, and linear regression lines were fitted to each set of data. The high correlation coefficients and the different slope values for the different MU-type combinations suggested that the nonlinear summation was MU-type specific. The mechanisms of nonlinear summations are discussed by considering the consequences of internal shortening and thus the mechanical interactions among MUs and shifts in muscle fiber length to a more or less advantageous portion of single MU length-tension curves.