Purpose: Our goal was to demonstrate the feasibility of an in vivo noninvasive method for imaging spinal cord cholinergic terminals using (+)-4-[18F]fluorobenzyltrozamicol ([18F]FBT) and PET.
Method: In vitro and in vivo experiments in rats were conducted to demonstrate the specific binding characteristics, localization, and time course of [3H]FBT binding in the spinal cord. PET imaging was then performed on seven rhesus monkeys.
Results: The rat studies demonstrate high specific binding in the spinal cord with a distribution coinciding with the known distribution of cholinergic terminals. In vivo tracer concentrations in the spinal cord and basal ganglia were of the same magnitude. With use of [18F]FBT and PET in the rhesus monkey, the spinal cord was clearly visualized, with tracer concentration in the spinal cord being approximately one-fourth of that seen in the basal ganglia.
Conclusion: This work demonstrates the feasibility of imaging cholinergic terminals in vivo in the spinal cord using [18F]FBT and PET.