The NG2 antibody, which recognises an integral membrane chondroitin sulphate, labels a significant population of cells in adult CNS white matter tracts of the rat optic nerve and anterior medullary velum (AMV). Adult NG2+ cells are highly complex with multiple branching processes and we show by EM immunocytochemistry that they extend perinodal processes, which contact nodes of Ranvier. NG2+ cells do not react to conventional immunohistochemical markers for adult glia and so we reservedly term them NG2P cells. In vitro, NG2 labels oligodendrocyte-type-2 astrocyte (O-2A) progenitors that can give rise to oligodendrocytes or type-2 astrocytes, depending on the culture medium. Thus, it is possible that NG2P cells may be derived from the same stem cells as oligodendrocytes. Interestingly, NG2+ cells identified previously in adult CNS displayed phenotypic characteristics of O-2Aadult progenitors and it is possible that, like them, NG2P cells might retain the capacity of generating oligodendrocytes in the adult CNS. This may be an important role of NG2P cells in demyelinating diseases such as multiple sclerosis. It is significant therefore that the perinodal processes of NG2P cells contact the only sites of exposed axolemma in myelinated axons, so that NG2P cells are ideally situated to detect and respond to changes in axonal function during demyelination. A further implication of our finding is that NG2P cells may perform functions at nodes of Ranvier previously attributed to perinodal astrocytes, including the clustering and maintenance of sodium channels in the axon membrane at nodes, during development and following demyelination.