Temporal control of rearrangement at the TCR alpha/delta locus is crucial for development of the gamma delta and alpha beta T cell lineages. Because the TCR delta locus is embedded within the alpha locus, rearrangement of any V alpha-J alpha excises the delta locus, precluding expression of a functional gamma delta TCR. Approximately 100 kb spanning the C delta-C alpha region has been sequenced from both human and mouse, and comparison has revealed an unexpectedly high degree of conservation between the two. Of interest in terms of regulation, several highly conserved sequence blocks (> 90% over > 50 bp) were identified that did not correspond to known regulatory elements such as the TCR alpha and delta enhancers or to coding regions. One of these blocks lying between J alpha 4 and J alpha 3, which appears to be conserved in other vertebrates, has been shown to augment TCR alpha enhancer function in vitro and differentially bind factors from nuclear extracts. To further assess a plausible regulatory role for this element, we have created mice in which this conserved sequence block is either deleted or replaced with a neomycin resistance gene driven by the phosphoglycerate kinase promoter (pgk-neor). Deletion of this conserved sequence block in vivo did have a local effect on J alpha usage, echoing the in vitro data. However, its replacement with pgk-neor had a much more dramatic, long range effect, perhaps underscoring the importance of maintaining overall structure at this locus.