Peptidylarginine deiminases (PADs), a group of post-translational enzymes, catalyze the conversion of protein-bound arginine residues to citrulline residues in a calcium ion-dependent manner and are widely distributed in various organs of vertebrates. Although the existence of four isoforms of PAD (types I, II, III, and IV) is reported in rodents, the relative functions of the isoforms with respect to their colocation in the tissues have yet to be explored. In this study, we cloned the full-length cDNA encoding mouse PAD type I by screening a uterine cDNA library and using the RACE method. This cDNA consists of an open reading frame of 1989 bases encoding 662 amino acids (73,823 Da), a 5'-untranslated region of 127 bases and a 3'-untranslated region of 1639 bases. Comparative reverse transcription-PCR and Northern-blot analyses detected PAD type I mRNA only in the epidermis and uterus. Administration of estrogen to adult ovariectomized mice increased the content of PAD type I mRNA in the uterus, providing evidence that its expression is under the control of the sex steroid hormone. We also cloned the full-length cDNAs of mouse PAD type III and type IV by the reverse transcription-PCR and RACE methods. The primary structure of PAD type III contains 664 amino acids (75,098 Da) deduced from the coding region of 1995 bases, and the primary structure of PAD type IV consists of 666 amino acids (74,475 Da) deduced from the coding region of 2001 bases. Comparison of the deduced amino acid sequences of all four isoforms of PAD showed about 50% identity with each other, the 3' regions being highly homologous compared with the 5' regions.