Fasting and leptin modulate adipose and muscle uncoupling protein: divergent effects between messenger ribonucleic acid and protein expression

Endocrinology. 1999 Apr;140(4):1511-9. doi: 10.1210/endo.140.4.6668.

Abstract

Leptin is believed to act through hypothalamic centers to decrease appetite and increase energy utilization, in part through enhanced thermogenesis. In this study, we examined the effects of fasting for 2 days and exogenous s.c. leptin, 200 microg every 8 h for 2 days, on the regulation of uncoupling protein (UCP) subtypes in brown adipose tissue (BAT) and gastrocnemius muscle. Northern blot analysis (UCP-1) and ribonuclease protection (UCP-2 and 3) were used for quantitative messenger RNA (mRNA) analysis, and specific antibodies were used to measure UCP-1 and UCP-3 total protein expression. Leptin, compared with vehicle, did not alter BAT UCP-1 or UCP-3 mRNA or protein expression when administered to normal ad libitum fed rats. Fasting significantly decreased BAT UCP-1 and UCP-3 mRNA expression, to 31% and 30% of ad libitum fed controls, respectively, effects which were prevented by administration of leptin to fasted rats. Fasting also significantly decreased BAT UCP-1 protein expression, to 67% of control; however, that effect was not prevented by leptin treatment. Fasting also decreased BAT UCP-3 protein, to 85% of control, an effect that was not statistically significant. Fasting, with or without leptin administration, did not affect BAT UCP-2 mRNA; however, leptin administration to ad libitum fed rats significantly increased BAT UCP-2 mRNA, to 138% of control. Fasting significantly enhanced gastrocnemius muscle UCP-3 mRNA (411% of control) and protein expression (168% of control), whereas leptin administration to fasted rats did not alter either of these effects. In summary, UCP subtype mRNA and protein are regulated in tissue- and subtype-specific fashion by leptin and food restriction. Under certain conditions, the effects of these perturbations on UCP mRNA and protein are discordant.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adipose Tissue / chemistry*
  • Animals
  • Blotting, Northern
  • Carrier Proteins / analysis
  • Carrier Proteins / genetics
  • Fasting / physiology*
  • Gene Expression*
  • Ion Channels
  • Leptin
  • Male
  • Membrane Proteins / analysis
  • Membrane Proteins / genetics
  • Membrane Transport Proteins*
  • Mitochondrial Proteins*
  • Muscle, Skeletal / chemistry*
  • Proteins / administration & dosage
  • Proteins / analysis
  • Proteins / genetics
  • Proteins / pharmacology*
  • RNA, Messenger / analysis
  • Rats
  • Rats, Sprague-Dawley
  • Uncoupling Agents / analysis*
  • Uncoupling Protein 1
  • Uncoupling Protein 2
  • Uncoupling Protein 3

Substances

  • Carrier Proteins
  • Ion Channels
  • Leptin
  • Membrane Proteins
  • Membrane Transport Proteins
  • Mitochondrial Proteins
  • Proteins
  • RNA, Messenger
  • Ucp1 protein, rat
  • Ucp2 protein, rat
  • Ucp3 protein, rat
  • Uncoupling Agents
  • Uncoupling Protein 1
  • Uncoupling Protein 2
  • Uncoupling Protein 3