Real-time, intracardiac, two-dimensional echocardiography: enhanced depth of field with a low-frequency (12.5 mhz) ultrasound catheter

Echocardiography. 1991 Jul;8(4):407-22. doi: 10.1111/j.1540-8175.1991.tb01002.x.

Abstract

Advances in catheter-based ultrasound imaging technology allow for a unique opportunity to develop two-dimensional intracardiac echocardiography, an imaging method that could have significant clinical applications. In this study, we evaluated the potential of a new, percutaneous, 9-Fr prototype intracardiac echocardiographic catheter with a 12.5-MHz rotating crystal in 13 dogs. In all dogs, we were able to easily advance the intracardiac echocardiographic catheter into the right and left hearts percutaneously and obtain dynamic images of cardiac structures in various imaging planes. With the intracardiac echocardiographic catheter in the right atrium, the whole chamber could be visualized. Minor manipulation allowed visualization of the right atrium, right ventricle, and tricuspid valve in a two-chamber view; further maneuvering yielded four-chamber views. With advancement of the catheter into the right ventricle and pulmonary artery, the right ventricular cavity, right ventricular outflow tract, and pulmonary artery could be imaged. The intracardiac echocardiographic catheter in the aortic root allowed visualization of the pulmonary artery and its bifurcation, superior portions of the atria, interatrial septum, aortic valve, and the proximal left coronary artery. With the intracardiac echocardiographic catheter in the left ventricle, short-axis images of the whole left ventricle were obtained. Manipulating the catheter tip within the left ventricle, we could visualize the left ventricle, left atrium (LA), and the mitral valve in the long axis. We were also able to visualize and identify experimentally-induced ischemic regional left ventricular dyskinesis (four of of five dogs), aortic valvular tear (five out of five dogs), and pericardial effusion with right atrial collapse (two out of two dogs). Intracardiac echocardiography was not associated with any complications. We conclude that percutaneous, low-frequency intracardiac echocardiography with a 12.5-MHz, 9-Fr catheter yields cardiac images in many imaging planes with a good depth of field, allows identification of valvular, myocardial, and pericardial abnormalities, and has excellent clinical potential in the assessment of many cardiovascular disorders.

MeSH terms

  • Animals
  • Cardiac Catheterization / adverse effects
  • Cardiac Catheterization / instrumentation*
  • Coronary Disease / diagnostic imaging
  • Dogs
  • Echocardiography / adverse effects
  • Echocardiography / instrumentation
  • Echocardiography / methods*
  • Echocardiography / trends
  • Equipment Design
  • Feasibility Studies
  • Forecasting
  • Heart / physiology
  • Heart Diseases / diagnostic imaging