Bryostatin-1 belongs to the family of macrocyclic lactones isolated from the marine bryozoan Bugula neritina and is a potent activator of protein kinase C (PKC). Bryostatin has been demonstrated to possess both in vivo and in vitro anti-leukaemic potential. In samples derived from chronic myeloid leukaemia (CML) patients, it has been demonstrated that bryostatin-1 induces a macrophage differentiation, suppresses colony growth in vitro and promotes cytokine secretion from accessory cells. We investigated the effect of bryostatin-1 treatment on colony-forming unit-granulocyte macrophage (CFU-GM) capacity in the presence of accessory cells, using mononuclear cells, as well as in the absence of accessory cells using purified CD34-positive cells. Cells were obtained from 14 CML patients as well as from nine controls. Moreover, CD34-positive cells derived from CML samples and controls were analysed for stem cell frequency and ability using the long-term culture initiating cell (LTCIC) assay at limiting dilution. Individual colonies derived from both the CFU-GM and LTCIC assays were analysed for the presence of the bcr-abl gene with fluorescence in situ hybridization (FISH) to evaluate inhibition of malignant colony growth. The results show that at the CFU-GM level bryostatin-1 treatment resulted in only a 1.4-fold higher reduction of CML colony growth as compared to the control samples, both in the presence and in the absence of accessory cells. However, at the LTCIC level a sixfold higher reduction of CML growth was observed as compared to the control samples. Analysis of the LTCICs at limiting dilution indicates that this purging effect is caused by a decrease in output per malignant LTCIC combined with an increase in the normal stem cell frequency. It is concluded that bryostatin-1 selectively inhibits CML growth at the LTCIC level and should be explored as a purging modality in CML.