A tracking algorithm was developed for calculation of three-dimensional point-specific myocardial motion. The algorithm was designed for images acquired with simultaneous magnetic resonance imaging (MRI) grid tagging and through-plane velocity quantification. The tagging grid provided the in-plane motion while the velocity quantification measured the through-plane motion. In four healthy volunteers, the in vivo performance was evaluated by comparing the systolic through-plane displacement with the displacement of tagging-grid intersections in long-axis images. The correlation coefficient was 0.93 (P < 0.001, N = 183). A t-test for paired samples revealed a small underestimation of the through-plane displacement by 0.04 +/- 0.09 cm (mean +/- SD, P < 0.001) on an average displacement of 0.77 +/- 0.23 cm toward the apex. The authors conclude that three-dimensional point-specific motion tracking based on simultaneous tagging and velocity quantification is competitive with other methods such as tagging in mutually orthogonal image planes or quantification of three orthogonal velocity components.