The recovery of wild type and attenuated human parainfluenza type 3 (PIV3) recombinant viruses has made possible a new strategy to rapidly generate a live-attenuated vaccine virus fof PIV1. We previously replaced the coding sequences for the hemagglutinin-neuraminidase (HN) and fusion (F) proteins of PIV3 with those of PIV1 in the PIV3 antigenomic cDNA. This was used to recover a fully-viable, recombinant chimeric PIV3-PIV1 virus, termed rPIV3-1, which bears the major protective antigens of PIV1 and is wild type-like with regard to growth in cell culture and in hamsters [Tao T, Durbin AP, Whitehead SS, Davoodi F, Collins PL, Murphy BR. Recovery of a fully viable chimeric human parainfluenza virus (PIV) type 3 in which the hemagglutinin-neuraminidase and fusion glycoprotein have been replaced by those of PIV type 1. J Virol 1998;72:2955-2961]. Here we report the recovery of a derivative of rPIV3-1 carrying the three temperature-sensitive and attenuating amino acid coding changes found in the L gene of the live-attenuated cp45 PIV3 candidate vaccine virus. This virus, termed rPIV3-1.cp45L, is temperature-sensitive with a shut-off temperature of 38 degrees C, which is similar to that of the recombinant rPIV3cp45L, which possesses the same three mutations. rPIV3-1.cp45L is attenuated in the respiratory tract of hamsters to the same extent as rPIV3cp45L. Infection of hamsters with rPIV3-1.cp45L generated a moderate level of hemagglutination-inhibiting antibodies against wild type PIV1 and induced complete resistance to challenge with wild type PIV1. This demonstrates that this novel attenuated chimeric virus is capable of inducing a highly effective immune response against PIV1. It confirms previous observations that the surface glycoproteins of parainfluenza viruses are sufficient to induce a high level of resistance to homologous virus challenge. Unexpectedly, infection with recombinant chimeric virus rPIV3-1.cp45L or rPIV3-1, each bearing the surface glycoprotein genes of PIV1 and the internal genes of PIV3, also induced a moderate level of resistance to replication of wild type PIV3 challenge virus. This indicates that the internal genes of PIV3 can independently induce protective immunity against PIV3 in rodents, albeit a lower level of resistance than that induced by the surface glycoproteins. Thus, a reverse genetics system for PIV3 has been used successfully to produce a live attenuated PIV1 vaccine candidate that is attenuated and protective in experimental infection in hamsters.