Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe

J Biol Chem. 1999 Apr 30;274(18):12702-9. doi: 10.1074/jbc.274.18.12702.

Abstract

Caveolae are vesicular organelles that represent a subcompartment of the plasma membrane. Caveolins and flotillins are two families of mammalian caveolae-associated integral membrane proteins. However, it remains unknown whether flotillins interact with caveolin proteins to form a stable caveolar complex or if expression of flotillins can drive vesicle formation. Here, we examine the cell type and tissue-specific expression of the flotillin gene family. For this purpose, we generated a novel monoclonal antibody probe that recognizes only flotillin-1. A survey of cell and tissue types demonstrates that flotillins 1 and 2 have a complementary tissue distribution. At the cellular level, flotillin-2 was ubiquitously expressed, whereas flotillin-1 was most abundant in A498 kidney cells, muscle cell lines, and fibroblasts. Using three different models of cellular differentiation, we next examined the expression of flotillins 1 and 2. Taken together, our data suggest that the expression levels of flotillins 1 and 2 are independently regulated and does not strictly correlate with known expression patterns of caveolin family members. However, when caveolins and flotillins are co-expressed within the same cell, as in A498 cells, they form a stable hetero-oligomeric "caveolar complex." In support of these observations, we show that heterologous expression of murine flotillin-1 in Sf21 insect cells using baculovirus-based vectors is sufficient to drive the formation of caveolae-like vesicles. These results suggest that flotillins may participate functionally in the formation of caveolae or caveolae-like vesicles in vivo. Thus, flotillin-1 represents a new integral membrane protein marker for the slightly larger caveolae-related domains (50-200 nm) that are observed in cell types that fail to express caveolin-1. As a consequence of these findings, we propose the term "cavatellins" be used (instead of flotillins) to describe this gene family.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Antibodies, Monoclonal / chemistry
  • Antibodies, Monoclonal / immunology*
  • Biopolymers
  • Caveolin 1
  • Caveolins*
  • Cell Differentiation
  • Cell Line
  • Epitope Mapping
  • Humans
  • Membrane Proteins / genetics
  • Membrane Proteins / immunology
  • Membrane Proteins / metabolism*
  • Molecular Probes
  • Molecular Sequence Data
  • Protein Binding
  • Recombinant Proteins / immunology
  • Recombinant Proteins / metabolism

Substances

  • Antibodies, Monoclonal
  • Biopolymers
  • CAV1 protein, human
  • Caveolin 1
  • Caveolins
  • Membrane Proteins
  • Molecular Probes
  • Recombinant Proteins
  • flotillins

Associated data

  • GENBANK/AF145044