Long-chain fatty acyl-CoA synthetase (FACS) catalyzes esterification of long-chain fatty acids (LCFAs) with coenzyme A (CoA), the first step in fatty acid metabolism. FACS has been shown to play a role in LCFA import into bacteria and implicated to function in mammalian cell LCFA import. In the present study, we demonstrate that FACS overexpression in fibroblasts increases LCFA uptake, and overexpression of both FACS and the fatty acid transport protein (FATP) have synergistic effects on LCFA uptake. To explore how FACS contributes to LCFA import, we examined the subcellular location of this enzyme in 3T3-L1 adipocytes which natively express this protein and which efficiently take up LCFAs. We demonstrate for the first time that FACS is an integral membrane protein. Subcellular fractionation of adipocytes by differential density centrifugation reveals immunoreactive and enzymatically active FACS in several membrane fractions, including the plasma membrane. Immunofluorescence studies on adipocyte plasma membrane lawns confirm that FACS resides at the plasma membrane of adipocytes, where it co-distributes with FATP. Taken together, our data support a model in which imported LCFAs are immediately esterified at the plasma membrane upon uptake, and in which FATP and FACS function coordinately to facilitate LCFA movement across the plasma membrane of mammalian cells.