In order to clarify the mechanism underlying the reduction of resting membrane chloride conductance (gCl) during aging, the levels of mRNA encoding the principal skeletal muscle chloride channel, ClC-1, were measured. Total RNA samples isolated from tibialis anterior muscles of aged (24-29 months old) and adult (3-4 months old) rats were examined for ClC-1 expression using Northern blot analysis, and macroscopic gCl was recorded from extensor digitorum longus muscle fibers from each adult and aged rat in vitro using a two intracellular microelectrode technique. Although interindividual variability was observed, aged rats exhibited a parallel reduction of both gCl and ClC-1 mRNA expression as compared to adult rats. A linear correlation exists between individual values of ClC-1 mRNA and gCl. These results provide evidence that ClC-1 is the main determinant of sarcolemmal gCl and demonstrate that the decrease of gCl observed during aging is associated with a down-regulation of ClC-1 expression in muscle.