Limiting amounts of p27Kip1 correlates with constitutive activation of cyclin E-CDK2 complex in HTLV-I-transformed T-cells

Oncogene. 1999 Apr 15;18(15):2441-50. doi: 10.1038/sj.onc.1202567.

Abstract

Human T-cells immortalized (interleukin-2 [IL-2] dependent) by the human T-cell lymphotropic/leukemia virus type I (HTLV-I), in time, become transformed (IL-2 independent). To understand the biochemical basis of this transition, we have used the sibling HTLV-I-infected T-cell lines, N1186 (IL-2 dependent) and N1186-94 (IL-2 independent), as models to assess the responses to antiproliferative signals. In N1186 cells arrested in G1 after serum/interleukin-2 (IL-2) deprivation, downregulation of the cyclin E-CDK2 kinase activity correlated with decreased phosphorylation of CDK2 and accumulation of p27Kip1 bound to the cyclin E-CDK2 complex, as seen in normal activated PBMCs (peripheral blood mononuclear cells). In contrast, N1186-94 cells failed to arrest in G1 upon serum starvation, displayed constitutive cyclin E-associated kinase activity, and, although CDK2 was partially dephosphorylated, the amount of p27Kip1 bound to the complex did not increase. This observation, extended to two other IL-2-dependent as well as to three IL-2-independent HTLV-I-infected T-cell lines, suggests that the lack of cyclin E-CDK2 kinase downregulation found in the late phase of HTLV-I transformation may correlate with insufficient amounts of p27Kip1 associated with the cyclin E-CDK2 complex. Reconstitution experiments demonstrated that the addition of p27Kip1 to lysates from N1186-94 starved cells resulted in the downregulation of cyclin E-associated kinase activity supporting the notion that the unresponsiveness of the cyclin E-CDK2 complex to growth inhibitory signals may be due to inadequate amounts of p27Kip1 assembled with the complex in HTLV-I-transformed T-cells. In fact, the amount of p27Kip1 protein was lower in most HTLV-I-transformed (IL-2-independent) than in the immortalized (IL-2-dependent) HTLV-I-infected T-cells. Furthermore, specific inhibitors of the phosphatidylinositol 3-kinase (P13K) induced an increase of p27Kip1 protein levels, which correlated with G1 arrest, in both IL-2-dependent and IL-2-independent HTLV-I-infected T-cells. Altogether, these results suggest that maintaining a low level of expression of p27Kip1 is a key event in HTLV-I transformation.

MeSH terms

  • CDC2-CDC28 Kinases*
  • Cell Cycle
  • Cell Cycle Proteins*
  • Cell Division
  • Cell Line, Transformed
  • Cyclin E / metabolism*
  • Cyclin-Dependent Kinase 2
  • Cyclin-Dependent Kinase Inhibitor p21
  • Cyclin-Dependent Kinase Inhibitor p27
  • Cyclin-Dependent Kinases / metabolism*
  • Cyclins / genetics
  • Cyclins / metabolism
  • Genes, Tumor Suppressor
  • HTLV-I Infections / metabolism
  • HTLV-I Infections / pathology
  • Human T-lymphotropic virus 1 / pathogenicity*
  • Humans
  • Interleukin-2 / metabolism
  • Microtubule-Associated Proteins / genetics
  • Microtubule-Associated Proteins / metabolism*
  • Phosphatidylinositol 3-Kinases / metabolism
  • Protein Serine-Threonine Kinases / metabolism*
  • T-Lymphocytes / metabolism*
  • T-Lymphocytes / pathology
  • T-Lymphocytes / virology
  • Tumor Suppressor Proteins*
  • Up-Regulation

Substances

  • CDKN1A protein, human
  • Cell Cycle Proteins
  • Cyclin E
  • Cyclin-Dependent Kinase Inhibitor p21
  • Cyclins
  • Interleukin-2
  • Microtubule-Associated Proteins
  • Tumor Suppressor Proteins
  • Cyclin-Dependent Kinase Inhibitor p27
  • Protein Serine-Threonine Kinases
  • CDC2-CDC28 Kinases
  • CDK2 protein, human
  • Cyclin-Dependent Kinase 2
  • Cyclin-Dependent Kinases