Microdialysis experiments were used to investigate the influence of locally applied 2-methylthioadenosine 5'-triphosphate (2-MeSATP) on extracellular dopamine concentrations in the rat nucleus accumbens (NAc). 2-MeSATP (0.1, 1, 10 mM) infused via the microdialysis probe caused a concentration-dependent stimulation of dopamine release. The P2 receptor antagonists reactive blue 2 and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) (30 microM each) depressed the basal release of dopamine when given alone and in addition counteracted the stimulatory effect of 2-MeSATP (1 mM). In contrast, a combination of the excitatory amino acid receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 300 microM) and 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP; 100 microM) increased the basal release of dopamine by themselves and facilitated the effect of 2-MeSATP (1 mM). The results suggest a physiologically relevant regulation of tonic dopamine release in the NAc by endogenous ATP via P2 receptors. This is due to the combination of a direct and an indirect (via glutamate release) effect of ATP on mesolimbic dopaminergic neurons.