The synaptic organization of the accessory olfactory bulb (AOB) was studied in the rat with antibodies against the excitatory neurotransmitter glutamate (Glu) and the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). To a large extent, the immunoreactivity patterns produced by the two antibodies were complementary. Glu-like immunoreactivity (-LI) was observed in the glomerular neuropil, in the mitral cells, and in large neurons located in the periglomerular region. Immunogold electron microscopy revealed particularly high levels of Glu-LI in the axon terminals of vomeronasal neurons. GABA-LI was present in granule and periglomerular cells and in their processes. The dendritic spines of granule cells, which were presynaptic to mitral cells, were strongly labelled by the antiserum against GABA. Labelling of serial semithin sections showed that the GABA-positive and Glu-positive neurons of the periglomerular region are generally distinct, and colocalization of Glu and GABA occurred only in a few cells. These results are consistent with electrophysiological studies indicating that the synaptic organization of the AOB is similar to that of the main olfactory bulb. In both systems, Glu is the neurotransmitter used by primary afferents and output neurons, whereas GABA is involved in the circuits underlying lateral and feed-back inhibition.