Core-branching pattern and sequence analysis of mannitol-terminating oligosaccharides by neoglycolipid technology

Anal Biochem. 1999 Jun 1;270(2):314-22. doi: 10.1006/abio.1999.4105.

Abstract

The occurrence of mannitol-terminating oligosaccharides (2-substituted or 2,6-disubstituted) among the O-glycans released by alkaline borohydride treatment from glycoproteins of the nervous system has prompted the development of a microscale method to analyze the core-branching pattern and sequence by the neoglycolipid (NGL) technology, analogous to a method previously described for GalNAcol-terminating oligosaccharides (M. S. Stoll, E. F. Hounsell, A. M. Lawson, W. Chai, and T. Feizi, Eur. J. Biochem. 189, 499-507, 1990). The approach involves the selective cleavage at the core mannitol by mild periodate treatment and analysis of the reaction products as NGLs by in situ TLC/liquid secondary ion mass spectrometry. Oxidation conditions have been optimized using as reference compounds 2-, 3-, 4-, or 6-monosubstituted mannobi-itols, 3,6-disubstituted mannitol-terminating pentasaccharides, and 2-mono- and 2,6-disubstituted mannitol-terminating neutral and sialylated oligosaccharides isolated from brain glycopeptides. When a 2:1 molar ratio of periodate to alditol is used, the core mannitol is cleaved at the C3-C4 threo-diol bond and in the absence of a threo-diol cleavage occurs to a lesser extent at erythro-diols. Saccharide ring diols are not cleaved under these conditions, and it is also shown that the side chain of sialic acid on the oligosaccharide is largely unaffected. Substituents at 2- and 6-positions of the core mannitol can be identified, and the method is applicable to neutral and sialylated oligosaccharide alditols. Typically, the starting material is 5 nmol of oligosaccharide and 0.5-1 nmol of derivatives is applied for analysis. By this strategy, the core-branching pattern and position of sialic acid of two branched monosialylated mannitol-terminating oligosaccharide isomers have been determined.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain Chemistry
  • Carbohydrate Sequence
  • Chromatography, Thin Layer
  • Isomerism
  • Mannitol / chemistry*
  • Mass Spectrometry
  • Molecular Sequence Data
  • Oligosaccharides / chemistry*
  • Oxidation-Reduction
  • Periodic Acid
  • Sequence Analysis / methods

Substances

  • Oligosaccharides
  • Periodic Acid
  • Mannitol