The purpose of this study was to evaluate rat tissue antioxidant status after repeated administration of d-amphetamine. Three groups of four rats each were used: control, d-amphetamine sulphate dosed (s.c., 20 mg/kg per day), and pair-fed. After 14 days of d-amphetamine daily administration, superoxide dismutase (CuZnSOD and MnSOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GRed), glutathione-S-transferase (GST), glutathione (GSH), cysteine and thiobarbituric acid reactive substances (TBARS) were measured in liver, kidney, and heart. Various serum and urine parameters were also analysed. d-Amphetamine treatment induced an increase of liver GSH, as well as a decrease of cysteine and MnSOD levels in this organ. A small increase in serum transaminases was also observed in comparison to the pair-fed group. Hepatic levels of TBARS, GPx, GRed and CuZnSOD were found to be similar among the three groups of rats. d-Amphetamine treatment induced an increase of kidney GST, GRed and catalase levels, and an elevation of N-acetyl-beta-D-glucosaminidase efflux to the urine, accompanied by a decrease in urinary creatinine, compared to the pair-fed group. In d-amphetamine treated animals, heart cysteine levels were significantly depleted when compared to the pair-fed group, but all three groups of rats were found to have similar heart antioxidant enzyme levels. These results indicate that repeated administration of d-amphetamine caused a certain degree of stress in liver and kidney, which was followed by adaptations of antioxidant defences. The mechanisms involved in d-amphetamine-induced toxicity may explain the different adaptations observed for the studied organs.