The role of hepatitis B virus HBx protein in the carcinogenesis associated with chronic viral infection remains ill-defined. Indeed, pleiotropic effects have been ascribed to HBx: in addition to its well-documented ability to indirectly stimulate transcription, the protein has been reported to affect cell growth, signal transduction, DNA repair and apoptosis. In this work, we generated Chang (CCL-13)-derived cell lines constitutively expressing wild type or mutant HBx, as a model of HBx-host cell interaction closer to the chronic infection setting, than the classically used transient expression systems. We document the potentiation by HBx of the apoptotic cell death pathway in the recipient cells. This effect is unlikely to rely on p53 activity since the protein is functionally inactivated in CCL-13. In addition, antioxidants and cyclosporin A failed to reduce the apoptotic response back to the normal level, suggesting that production of reactive oxygen species and calcineurin activation are not directly involved in the proapoptotic effect of HBx. In contrast, our data show that transactivation and stimulation of apoptosis are tightly linked HBx activities. Finally, expression of transactivation-active protein did not result in detectable change in the pattern of MAP kinases phosphorylation nor did it affect the ability of the host cell to repair in vitro irradiated plasmid DNA.