Nucleotide excision repair modulates the cytotoxic and mutagenic effects of N-n-butyl-N-nitrosourea in cultured mammalian cells as well as in mouse splenocytes in vivo

Mutagenesis. 1999 May;14(3):317-22. doi: 10.1093/mutage/14.3.317.

Abstract

The butylating agent N-n-butyl-N-nitrosourea (BNU) was employed to study the role of nucleotide excision repair (NER) in protecting mammalian cells against the genotoxic effects of monofunctional alkylating agents. The direct acting agent BNU was found to be mutagenic in normal and XPA mouse splenocytes after a single i.p. treatment in vivo. After 25 and 35 mg/kg BNU, but not after 75 mg/ kg, 2- to 3-fold more hprt mutants were detected in splenocytes from XPA mice than from normal mice. Using O6-alkylguanine-DNA alkyltransferase (AGT)-deficient hamster cells, it was found that NER-deficient CHO UV5 cells carrying a mutation in the ERCC-2 gene were 40% more mutable towards lesions induced by BNU when compared with parental NER-proficient CHO AA8 cells. UV5 cells were 1.4-fold more sensitive to the cytotoxic effects of BNU compared with AA8 cells. To investigate whether this increased sensitivity of NER-deficient cells is modulated by AGT activity, cell survival studies were performed in human and mouse primary fibroblasts as well. BNU was 2.7-fold more toxic for mouse XPA fibroblasts compared with normal mouse fibroblasts. Comparable results were found for human fibroblasts. Taken together these data indicate that the role of NER in protecting rodent cells against the mutagenic and cytotoxic effects of the alkylating agent BNU depends on AGT.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CHO Cells
  • Cells, Cultured
  • Cricetinae
  • DNA Damage / drug effects
  • DNA Repair / drug effects*
  • DNA Repair / physiology*
  • Dose-Response Relationship, Drug
  • Fibroblasts
  • Humans
  • Mice
  • Mutagenicity Tests
  • Mutagens / toxicity*
  • Nitrosourea Compounds / toxicity*
  • Spleen / metabolism

Substances

  • Mutagens
  • Nitrosourea Compounds
  • N-nitrosobutylurea