We investigated 31 malignant peripheral nerve sheath tumors (MPNSTs) from 23 patients by means of comparative genomic hybridization (CGH) in order to study quantitative genomic aberrations of these tumors. Twenty-one of the 23 patients revealed changes, with a mean value of 11 aberrations per sample (range 2-29). The minimal common regions of the most frequent gains were 8q23-q24.1 (12 cases), 5p14 (11 cases), and 6p22-pter, 7p15-p21, 7q32-q35, 8q21.1-q22, 8q24.2-qter, and 17q22-qter (10 cases each). Seventeen high-level amplifications were detected in eight of the 21 samples. In three cases, the high-level amplifications involved 8q24.1-qter, and in two cases each the high-level amplifications involved regions 5p14, 7p14-pter, 8q21.1-q23, and 13q32-q33. The minimal common region of frequent losses was 14q24.3-qter (five cases). The gain of 8q as a single common change in the primary tumor, the recurrence, and the metastasis from the same patient suggests that this aberration is an early change in the tumorigenesis of MPNSTs. Comparable aberrations were observed in separate tumors of the same patients affected by Recklinghausen's disease, indicating a limited number of accidental secondary changes. In sporadic MPNSTs, the most frequent gains were narrowed down predominantly to 5p, 6, 8q, and 20q, whereas in MPNSTs from patients with Recklinghausen's disease, there was most often a gain in 7q, 8q, 15q, and 17q. The occurrence of gain of both 7p15-p21 and 17q22-qter was associated with a statistically significant poor overall survival rate (P = 0.0096).