Peptide specificity determinants at P-7 and P-6 enhance the catalytic efficiency of Ca2+/calmodulin-dependent protein kinase I in the absence of activation loop phosphorylation

J Biol Chem. 1999 Jul 16;274(29):20215-22. doi: 10.1074/jbc.274.29.20215.

Abstract

Phosphorylation of Ca2+/calmodulin-dependent protein kinase I (CaM KI) at Thr-177 by recombinant rat Ca2+/calmodulin-dependent kinase kinase B (CaM KKB) modulates the kinetics of synapsin-(4-13) peptide phosphorylation by reducing the Km 44-fold and decreasing the KCaM 4-fold. There is also a slight decrease in Km for ATP and increase in enzyme Vmax. A synthetic peptide substrate from the yeast transcription factor, ADR1-(222-234)G233 is a 15-fold better substrate for the Thr-177 dephospho-form of CaM KI than synapsin-(4-13). The Thr-177 dephospho-enzyme has a Km and Vmax for ADR1-(222-234)G233 similar to the values with synapsin-(4-13) using the Thr-177 phosphorylated enzyme. Likewise, with ADR1-(222-234)G233 as substrate, phosphorylation of Thr-177 or substitution of T177A had very little effect on the kinetic values. Using chimeric peptides between synapsin-(4-13) and ADR1-(222-234)G233 we found that N-terminal basic residues at P-7 and P-6 positions were sufficient to allow efficient phosphorylation by the Thr-177 dephospho-form of CaM KI. Phosphorylation of Thr-177 expands the substrate specificity of CaM KI and is not merely an "on-off" switch for kinase activity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Calcium-Calmodulin-Dependent Protein Kinases / metabolism*
  • Catalysis
  • Enzyme Activation
  • HL-60 Cells
  • Humans
  • Kinetics
  • Peptides / metabolism*
  • Phosphorylation
  • Rats
  • Sequence Homology, Amino Acid
  • Substrate Specificity

Substances

  • Peptides
  • Calcium-Calmodulin-Dependent Protein Kinases