Despite an increasing number of publications concerning the antioxidant activity of melatonin, little is known about the structural features responsible for this kind of activity. To understand the role played by the different elements of melatonin structure in its antioxidant activity, we have designed and tested several compounds related to this molecule in the low-density lipoprotein peroxidation model. We present here the results of this study in terms of structure-activity relationships focusing on the influence of the acetamidoethyl side chain, the methoxy group, and the indole heterocycle. In this model, we found that changing the acyl residue generally resulted in more active products. We obtained particularly good results with the nonanoyl derivative which showed a level of activity comparable to that of phenols despite lacking a phenolic function. The presence of a methoxy group in position 5 generally had a beneficial influence on the activity, but when located in position 6, the effects were various. The substitution of a hydroxy for the methoxy group led to phenolic compounds endowed with very high antioxidant activity. Replacing the amide with a ketone function did not affect the activity while replacement with an amine group in some cases resulted in prooxidant compounds. Finally, we compared the efficacy of different aromatic rings. The indole heterocycle proved to be better than benzofurane and naphthalene rings.