Electrochemical detection of quantal catecholamine release from PC-12 cells revealed that glibenclamide, an inhibitor of ATP-sensitive K(+) channels, potentiated Ca(2+)-dependent exocytosis evoked by raised extracellular [K(+)] and by exposure of cells to caffeine. Glibenclamide was without effect on voltage-gated Ca(2+) currents, membrane potential, or rises of [Ca(2+)](i) evoked by either raised extracellular [K(+)] or caffeine. The dependence of K(+)-evoked secretion on extracellular Ca(2+) was shifted leftward in the presence of glibenclamide, with a small increase in the plateau level of release, suggesting that glibenclamide primarily increased the Ca(2+) sensitivity of the exocytotic apparatus. Enhancement of secretion by glibenclamide was reversed by pinacidil and cromakalim, indicating that the effects of glibenclamide were mediated via an action on a sulfonylurea receptor. These results demonstrate that sulfonylurea receptors can modulate Ca(2+)-dependent exocytosis via a mechanism downstream of Ca(2+) influx or mobilization.