Plasmodium merozoites are covered with a palisade layer of proteins that are arranged as organized bundles or appear as protruding spikes by electron microscopy. Here we present a third Plasmodium vivax merozoite surface protein, PvMSP-3, which is associated with but not anchored in the merozoite membrane. Serum from a P. vivax immune squirrel monkey was used to screen a lambdagt11 P. vivax genomic DNA (gDNA) library. Plaque-selected antibodies from clone no. 6.1, and rabbit antisera against its encoded protein, produced a pattern in immunofluorescence assays (IFAs) that is consistent with a localization at the surface of mature schizonts and free merozoites. Specific antisera also agglutinated merozoites and recognized a protein of 150 000 Da by SDS-PAGE. The complete msp-3 gene and flanking sequences were cloned from a P. vivax lambda Dash II gDNA library and also partly characterized by RACE (rapid amplification of cDNA ends). The immediate upstream sequence contains non-coding repeats and a putative protein encoding open reading frame (ORF), which are also present on the msp-3 5'RACE gene product. Pvmsp-3 encodes a protein with a calculated mass of 89 573 Da, which has a potential signal peptide and a major central alanine-rich domain (31%) that exhibits largely alpha-helical secondary structure and is flanked by charged regions. The protein does not have a putative transmembrane domain or a consensus sequence for a glycosylphosphatidylinositol (GPI) anchor modification. However, the alanine-rich domain has heptad repeats that are predicted to form coiled-coil tertiary structures, which mediate protein-protein interactions. PvMSP-3 is structurally related to P. falciparum MSP-3 and the 140000 Da MSP of P. knowlesi. Characterization of PvMSP-3, thus, also begins to define a new interspecies family of evolutionarily related Plasmodium merozoite proteins.