Objective: To study the role of cell cycle regulation during HIV infection by investigating in vivo and in vitro cyclin B and p34 cdc kinase expression.
Methods: Cyclin B expression was analysed by Western blot in CD4 and CD8 cells from 25 HIV-infected patients and 24 uninfected individuals. In eight patients, a sequential analysis was performed after initiation of antiretroviral therapy (ART), and correlations with CD4 cell count and HIV viremia were studied. Sequential changes in cyclin B expression and p34 cdc kinase expression and activity were also studied in lymphocytes activated in vitro with phytohaemagglutinin (PHA).
Results: Lymphocytes from untreated HIV-infected patients demonstrate persistent in vivo overexpression of cyclin B in both CD4 and CD8 cell subpopulations. When cells are stimulated to proliferate in vitro, biochemical events that characterize the entrance into the cell cycle [ornithine decarboxylase (ODC) activity, interleukin 2 production, interleukin 2 alpha-chain receptor (IL-2R, CD25) expression, total protein synthesis, total DNA synthesis] show similar timing and sequence in lymphocytes from HIV-infected and uninfected individuals. However, in peripheral blood lymphocytes (PBL) from HIV-infected patients, cyclin B and p34 cdc kinase show premature expression during the cell cycle. Both in vivo cyclin B overexpression and in vitro unscheduled cyclin B expression were almost completely reversed 2-4 weeks after initiation of effective ART.
Conclusion: Increased and unscheduled expression of cyclin B and p34 cdc kinase is consistently observed in CD4 and CD8 cells from HIV-infected patients, both in vivo and after in vitro mitogenic stimulation. These alterations correlate with the level of viremia and may provide a link between the perturbation of lymphocyte proliferative homeostasis and the exaggerated propensity towards apoptosis.