After ultraviolet exposure Langerhans cells (epidermal CD1a+ cells) disappear from the healthy skin, and CD11b+ macrophage-like cells, which are reported to produce interleukin-10, appear in a matter of days. These phenomena are related to the ultraviolet-induced local suppression of contact hypersensitivity reactions. A defect in this suppression might allow inadvertent immune reactions to develop after ultraviolet (over)exposure; i.e., it could cause ultraviolet-B-induced polymorphous light eruption. In order to test this we first exposed buttock skin of eight healthy volunteers to six minimal erythema doses from Philips TL12 lamps, and indeed observed a dramatic disappearance of CD1a+ cells 48 and 72 h later, at which time the number of CD11b+ cells increased in the dermis, and some occurred in the epidermis. The epidermis thickened and showed large defects, filled by CD11b+ cells, just below the stratum corneum. In 10 patients with polymorphous light eruption (five with a normal minimal erythema dose and five with a low minimal erythema dose) CD1a+ cells were present in the epidermis as well as in the dermis before exposure. Strikingly, these cells were still present in considerable number at 48 and 72 h after exposure to six minimal erythema doses. CD11b+ cells already present in the dermis before ultraviolet exposure, increased after ultraviolet exposure, and subsequently also invaded the epidermis. Despite the six minimal erythema doses, there were no apparent defects in the epidermis of the polymorphous light eruption patients. This deviant early response to ultraviolet radiation is likely to be of direct relevance to the polymorphous light eruption and is perhaps useful as a diagnostic criterion.