Molecular dynamics simulations of supported phospholipid/alkanethiol bilayers on a gold(111) surface

Biophys J. 1999 Aug;77(2):964-72. doi: 10.1016/S0006-3495(99)76947-X.

Abstract

Molecular dynamics simulations have been used to investigate the structure of hybrid bilayers (HB) formed by dipalmitoylphosphatidylcholine (DPPC) lipid monolayers adsorbed on a hydrophobic alkanethiol self-assembled monolayer (SAM). The HB system was studied at 20 degrees C and 60 degrees C, and the results were compared with recent neutron reflectivity measurements (Meuse, C. W., S. Krueger, C. F. Majkrzak, J. A. Dura, J. Fu, J. T. Connor, and A. L. Plant. 1998. Biophys. J. 74:1388) and previous simulations of hydrated multilamellar bilayers (MLB) of DPPC (Tu, K., D. J. Tobias, and M. L. Klein. 1995. Biophys. J. 69:2558; and 1996. 70:595). The overall structures of the HBs are in very good agreement with experiment. The structure of the SAM monolayer is hardly perturbed by the presence of the DPPC overlayer. The DPPC layer presents characteristics very similar to the MLB gel phase at low temperature and to the liquid crystal phase at high temperature. Subtle changes have been found for the lipid/water interface of the HBs compared to the MLBs. The average phosphatidylcholine headgroup orientation is less disordered, and this produces changes in the electric properties of the HB lipid/water interface. These changes are attributed to the fact that the aqueous environment of the lipids in these unilamellar films is different from that of MLB stacks. Finally, examination of the intramolecular and whole-molecule dynamics of the DPPC molecules in the fluid phase HB and MLB membranes revealed that the reorientations of the upper part of the acyl chains (near the acyl ester linkage) are slower, the single molecule protrusions are slightly damped, and the lateral rattling motions are significantly reduced in the HB compared with the MLB.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • 1,2-Dipalmitoylphosphatidylcholine / chemistry
  • Alkanes / chemistry*
  • Biophysical Phenomena
  • Biophysics
  • Gold / chemistry
  • Lipid Bilayers / chemistry*
  • Models, Molecular
  • Phospholipids / chemistry*
  • Sulfhydryl Compounds / chemistry*
  • Surface Properties
  • Thermodynamics

Substances

  • Alkanes
  • Lipid Bilayers
  • Phospholipids
  • Sulfhydryl Compounds
  • 1,2-Dipalmitoylphosphatidylcholine
  • Gold