The aim of this study was to determine the contribution of morphologic characteristics and location of plaque in remodeling of atherosclerotic coronary arteries. Consecutive intravascular ultrasound studies performed in native coronary arteries before an intervention were included in the study. Total vessel, lumen and plaque + media areas were measured at target lesion, and distal and proximal references. Remodeling index was calculated as target total vessel area/proximal reference total vessel area, and categorized into 3 groups based on relative total vessel-area ratio: (1) > 1.1 (group A, adequate remodeling); (2) 0.9 to 1.1 (group B, failure of compensatory enlargement); and (3) <0.9 (group C, coronary shrinkage). Eighty-nine narrowings were assessed in 80 intravascular ultrasound studies. Thirty-eight lesions (43%) were defined as soft and 51 (57%) as hard. Soft plaques were more prevalent in group A than in groups B and C (p = 0.001). Conversely, the arc of calcium was larger in group C lesions (p = 0.005). At distal segments, group A lesions were more prevalent than those in groups B and C, whereas at proximal segments group C lesions were more prevalent (p = 0.007). Multivariate analysis identified the arc of calcium and the location of plaque at distal segments as independent predictors of compensatory enlargement (odds ratio 0.94, 95% confidence interval 0.90 to 0.99; odds ratio 4.6; 95% confidence interval 1.4 to 15.7, respectively), whereas hard plaques were an independent predictor of coronary shrinkage (odds ratio 4.6; 95% confidence interval 1.7 to 12.5). In conclusion, composition and location of plaque appeared to be major determinants of vessel remodeling during the process of atherosclerosis.