Senile plaques of Alzheimer's brain are characterized by activated microglia and immunoreactivity for the peptide chromogranin A. We have investigated the mechanisms by which chromogranin A activates microglia, producing modulators of neuronal survival. Primary cultures of rat brain-derived microglia display a reactive phenotype within 24 h of exposure to 10 nM chromogranin A, culminating in microglial death via apoptotic mechanisms mediated by interleukin-1beta converting enzyme. The signalling cascade initiated by chromogranin A triggers nitric oxide production followed by enhanced microglial glutamate release, inhibition of which prevents microglial death. The plasma membrane carrier inhibitor aminoadipate and the type II/III metabotropic glutamate receptor antagonist (RS)-alpha-methyl-4-sulphonophenylglycine are equally protective. A significant amount of the released glutamate occurs from bafilomycin-sensitive stores, suggesting a vesicular mode of release. Inhibition of this component of release affords significant microglial protection. Conditioned medium from activated microglia kills cerebellar granule cells by inducing caspase-3-dependent neuronal apoptosis. Brain-derived neurotrophic factor is partially neuroprotective, as are ionotropic glutamate receptor antagonists, and, when combined with boiling of conditioned medium, full protection is achieved; nitric oxide synthase inhibitors are ineffective.