We have used genetic methods in Methanococcus maripaludis to study nitrogen metabolism and its regulation. We present evidence for a "nitrogen regulon" in Methanococcus and Methanobacterium species containing genes of nitrogen metabolism that are regulated coordinately at the transcriptional level via a common repressor binding site sequence, or operator. The implied mechanism for regulation resembles the general bacterial paradigm for repression, but contrasts with well-known mechanisms of nitrogen regulation in bacteria, which occur by activation. Genes in the nitrogen regulons include those for nitrogen fixation, glutamine synthetase, (methyl)ammonia transport, the regulatory protein GlnB, and ammonia-dependent NAD synthetase, as well as a gene of unknown function. We also studied the function of two novel GlnB homologues that are encoded within the nif gene cluster of diazotrophic methanogens. The phenotype resulting from a glnB null mutation in M. maripaludis provides direct evidence that glnB-like genes are involved in "ammonia switch-off," the post-transcriptional inhibition of nitrogen fixation upon addition of ammonia. Finally, we show that the gene nifX is not required for nitrogen fixation, in agreement with findings in several bacteria. These studies illustrate the utility of genetic methods in M. maripaludis and show the enhanced perspective that studies in the Archaea can bring to known biological systems.