The stoichiometry of the structural proteins of the photosynthetic apparatus in purple photosynthetic bacteria is achieved primarily by complex regulation of the levels of mRNA encoding the different proteins, which has been studied in the greatest detail in the puf operon. Here we investigated the transcriptional and posttranscriptional regulation of the puc operon, which encodes the peripheral light harvesting complex LHII. We show that, analogous to the puf operon, a primary transcript encoding five puc genes is rapidly processed to generate more stable RNA subspecies. Contrary to previous hypotheses, translational coupling and regulation of puc transcription by puc gene products were found not to occur. A putative RNA stem-loop structure appears to attenuate transcription initiated at the puc operon major promoter. We also found that a minor pucD-internal promoter contributes to the levels of a message that encodes the LHII 14-kDa gamma (PucE) protein.