The insulin-responsive glucose transporter, GLUT-4, moves from an intracellular compartment to the cell surface in response to insulin and/or muscle contraction. Treatment of H9c2 myotubes with insulin significantly increased uptake of 2-deoxyglucose. Depolarization of the myotubes by increasing extracellular [K(+)], which mimics the initial phases of excitation-contraction coupling, also increased 2-deoxyglucose uptake. The K(+)- but not insulin-evoked increase was blocked by dantrolene, an inhibitor of Ca(2+) release from the sarcoplasmic reticulum. In contrast, wortmannin, an inhibitor of phosphatidylinositol 3-kinase, blocked insulin- but not K(+)-stimulated 2-deoxyglucose uptake. Increased glucose uptake in response to insulin or K(+) depolarization was associated with increased GLUT-4 in plasma membranes and depletion of a population of small intracellular GLUT-4-containing vesicles. Similarly, in H9c2 cells transfected with c-myc-tagged GLUT-4, translocation of c-myc GLUT-4 to the cell surface was increased after stimulation with insulin or K(+) depolarization. Taken together, these data demonstrate that insulin and K(+) depolarization increase glucose uptake by recruiting GLUT-4 from intracellular vesicles to the plasma membrane of H9c2 myotubes via distinct signaling mechanisms.