The impact of sodium intake and changes in total body sodium (TBS) for the setting of pressure-dependent renin release (PDRR) was studied in freely moving dogs. An aortic cuff allowed servo control of renal perfusion pressure (RPP) at preset values. Protocols were 1) high sodium intake (HSI), 2) low sodium intake (LSI), 3) TBS moderately increased (+3.1 mmol Na/kg body wt) by 20% reduction of RPP for 2-4 days, 4) large increase of TBS (+8.2) by combining protocol 3 with aldosterone infusion, and 5) TBS reduced (-3.1) by peritoneal dialyses. Twenty-four-hour time courses of arterial plasma renin activity (PRA) revealed that LSI increased PRA for the first 10 h only; afterward PRA did not differ between LSI and HSI. Reduced TBS increased PRA constantly, and the large increase of TBS constantly reduced PRA. PDRR stimulus-response curves (assessed 20 h after last sodium intake) revealed an exponential relationship in each protocol. PDRR was not changed by different sodium intake. Conversely, reduced TBS increased PDRR markedly, whereas the large increase of TBS suppressed it. Thus an inverse relationship between TBS and PRA, i.e., a TBS-dependent renin release, was found. This relationship was enhanced by decreasing RPP. This interplay between TBS-dependent renin release and PDRR allows the organism a differentiated reaction to changes in TBS and arterial pressure.