Cardiac mast cells have been recently isolated and characterized in humans, however canine cardiac mast cells have not been investigated. The objective of this study is to describe the histological and morphological characteristics of canine cardiac mast cells and examine the potential usefulness of canine models in investigating the role of mast cells in cardiovascular pathology. Canine cardiac mast cells could be easily identified by staining with Toluidine Blue or FITC-avidin. Using Toluidine Blue staining, we demonstrated fewer mast cells in formalin-fixed samples than in specimens fixed in Carnoy's, thus identifying a formalin-sensitive mast cell population in the canine heart. Mast cells were equally distributed in atria and ventricles with approximately 50% showing a perivascular location. Using enzyme-histochemical techniques, we detected tryptase and chymase activity in canine cardiac mast cells. Ultrastructural studies identified mast cells as granular cells with an eccentric non-segmented nucleus. Immunohistochemistry with the macrophage specific antibody AM-3K demonstrated that resident cardiac macrophages were 1.9 times more numerous than mast cells, also showing a predominantly perivascular (60%) location. Perivascular macrophages were more often periarteriolar, whereas perivascular mast cells were more often located along small veins and capillaries. Due to their ability to release cytokines and growth factors and their strategic perivascular location, resident cardiac inflammatory cells, such as mast cells and macrophages, may be important in pathological processes causing myocardial inflammation and fibrosis. Furthermore, mast cell-derived chymase, an important angiotensin II-forming enzyme may have a significant role in regulating the cardiac renin-angiotensin system.