The c-kit protooncogene encodes a receptor tyrosine kinase that is known to play a critical role in hemopoiesis and is essential for mast cell growth, differentiation, and cytokine production. Studies have shown that the Th2 cytokine IL-4 can down-regulate Kit expression on human and murine mast cells, but the mechanism of this down-regulation has remained unresolved. Using mouse bone marrow-derived mast cells, we demonstrate that IL-4-mediated Kit down-regulation requires STAT6 expression and phosphotidylinositide-3'-kinase activation. We also find that the Th2 cytokine IL-10 potently down-regulates Kit expression. IL-4 enhances IL-10-mediated inhibition in a manner that is STAT6 independent and phosphotidylinositide-3'-kinase dependent. Both IL-4- and IL-10-mediated Kit down-regulation were coupled with little or no change in c-kit mRNA levels, no significant change in Kit protein stability, but decreased total Kit protein expression. Inhibition of Kit expression by IL-4 and IL-10 resulted in a loss of Kit-mediated signaling, as evidenced by reduced IL-13 and TNF-alpha mRNA induction after stem cell factor stimulation. These data offer a role for STAT6 and phosphotidylinositide-3'-kinase in IL-4-mediated Kit down-regulation, coupled with the novel observation that IL-10 is a potent inhibitor of Kit expression and function. Regulating Kit expression and signaling may be essential to controlling mast cell-mediated inflammatory responses.