Much progress has been made in understanding how mammalian cells receive a diverse array of external stimuli and convert them into intracellular biochemical signals. Such efforts have identified a large number of signalling molecules. However, our knowledge is limited as to their pathophysiological role in particular diseases. We demonstrate herein that an integrin-linked signalling molecule, focal adhesion kinase p125FAK (FAK), is overexpressed in glomeruli of lupus-prone MRL/MP-lpr/lpr (MRL-lpr) mouse as compared to its congeneic MRL-+/+ strain. Increased expression was specifically demonstrated in glomeruli but not in other tissues examined. The overexpression was observed in 16-week-old MRL-lpr mice with active nephritis, as well as in younger animals at 4 weeks of age. Thus, the upregulation of FAK clearly preceded the clinical onset of nephritis. FAK in MRL-lpr glomeruli is highly tyrosine phosphorylated and is associated with adapter protein Grb2. Previous in vitro studies have shown that the association of FAK/Grb2 links cell adhesion to the Ras pathway, which ultimately stimulates mitogen-activated protein (MAP) kinase, an important regulator of cell proliferation. In accordance, we observed constitutive MAP kinase activation in MRL-lpr glomeruli. Our findings suggest that signalling pathways involving FAK are activated in MRL-lpr glomeruli, and are likely to play a role in the development and progression of autoimmune-mediated murine nephritis.