Inactivation, dissociation, and unfolding of the homodimeric glutathione transferase (bbGSTP1-1) from Bufo bufo embryos were investigated at equilibrium, using guanidinium chloride (GdmCl) as denaturant. Protein transitions were monitored by enzyme activity, intrinsic fluorescence, far UV circular dichroism, glutaraldehyde cross-linking, and gel-filtration chromatography. At low denaturant concentrations (less than 0.5 M), reversible inactivation of the enzyme occurs. At denaturant concentrations between 0.5 and 1.5 M the enzyme progressively dissociates into structured monomers. At higher denaturant concentrations the monomers unfold completely. Refolding studies indicate that a total reactivation occurs only by starting from the enzyme denatured at concentrations below 0.5 M. The enzyme denatured at GdmCl concentrations higher than 0.5 M only partially refolds. Globally our results indicate that unfolding of the amphibian bbGSTP1-1 is a multistep process, i.e., inactivation of the structured dimer, dissociation into partially structured monomers, followed by complete unfolding.
Copyright 1999 Academic Press.