Background: Helicobacter pylori produces Hpn, a 60-amino acid, histidine-rich protein that avidly binds nickel and zinc ions, and NixA, a high-affinity nickel transporter in the cytoplasmic membrane. We tested the hypothesis that Hpn and NixA govern susceptibility to metal ions in H. pylori.
Materials and methods: Hpn-negative mutants of four H. pylori strains were constructed by standard allelic exchange techniques to yield isogenic Hpn+/Hpn-deficient pairs. A metal concentration that inhibited growth by 50% (IC50) was calculated for Ni2+, Zn2+, Cu2+, and Co2+ by comparing OD600 of cultures in metal-supplemented and control media.
Results: Among all four pairs of isogenic strains, the tolerance for Ni2+ was reduced significantly (p <.001) in the Hpn mutants; the mean IC50 value for wild-type strains was 1.9 mM; for the mutant, it was 0.8 mM. In contrast, growth inhibition by Zn2+ was identical within the fours pairs, as was Cu2+ and Co2+ tolerance in one pair tested. We also found that deletion of the hpn gene increases susceptibility to therapeutic forms of bismuth by testing a mutant and wild-type pair with ranitidine bismuth citrate, bismuth citrate, and four antibiotics. Minimal inhibitory concentrations of ranitidine bismuth citrate dropped from 9.2 to 2.3 microg/ml, and those of bismuth citrate dropped from 7.4 to 3.2 microg/ml (p <.05 for both comparisons), while susceptibility to the antibiotics was unaffected. Disruption of the nixA gene encoding the specific Ni2+ transport protein of H. pylori did not change susceptibility to bismuth.
Conclusion: We concluded that bacteria lacking Hpn, cultured in vitro, are more susceptible than is the wild type to bismuth and Ni2+.