Double heterozygotes who inherit one abnormal though stable beta-globin variant in association with a molecularly identified beta(+)-thalassaemia allele provide unique opportunities to quantify the in vivo expression of particular beta(+)-thalassemia alleles. The globin products of the two alleles can be separated, quantified and the output of the beta(+)-thalassaemia allele expressed as the MCH-beta(A) in pg beta(A)-globin/beta(+)-thalassemia allele/RBC = 0.5 MCH x Hb A%. In this communication we provide new quantitative data on the expression of five mutations as follows: the beta(+)-87 (C-->G) = 3.8 pg beta(A)-globin/beta(+)-thalassemia allele/RBC (n = 1); the beta(+) IVS-I-1 (G-->A) = 0.2 pg beta(A)-globin/beta(+)-thalassemia allele/RBC (n = 1); the beta(+) IVS-I-6 (T-->C) = 2.9 pg beta(A)-globin/beta(+)-thalassemia allele/RBC (n = 7); the beta(+) IVS-I-110 (G-->A) = 1.1 pg beta(A)-globin/beta(+)-thalassemia allele/RBC (n = 13), and the beta(+) IVS-II-745 (C-->G) = 1.74 pg beta(A)-globin/beta(+)-thalassemia allele/RBC (n = 2). The values obtained are compared with those of other beta(+)-thalassemia alleles from the literature. It can be seen that the MCH-beta(A) value may be a correct index of thalassemia severity useful for the correlation of genotype with phenotype, and for understanding the effects of mutations in beta-globin genes on pathophysiologically meaningful beta-globin gene expression.