Nitric oxide inhibits iron-induced lipid peroxidation in HL-60 cells

Arch Biochem Biophys. 1999 Oct 1;370(1):97-104. doi: 10.1006/abbi.1999.1386.

Abstract

Nitric oxide ((*)NO) can protect cells against the detrimental effects of reactive oxygen species. Using low-density lipoprotein as well as model systems, it has been demonstrated that (*)NO can serve as a chain-breaking antioxidant to blunt lipid peroxidation. To test the hypothesis that (*)NO can serve as a chain-breaking antioxidant in cell membranes, we examined the effect of (*)NO on iron-induced lipid peroxidation in human leukemia cells. We exposed HL-60 cells to an oxidative stress (20 microM Fe(2+)) and monitored the consumption of oxygen as a measure of lipid peroxidation. Oxygen consumption was arrested by the addition of (*)NO as a saturated aqueous solution. The duration of inhibition of oxygen consumption by (*)NO was concentration-dependent in the 0.4-1.8 microM range. The inhibition ended upon depletion of (*)NO. The addition of (*)NO prior to initiation of peroxidation delayed the onset of peroxidation; the nearer in time it was before Fe(2+) addition, the longer the inhibition. Depletion of cellular glutathione levels by d, l-buthionine-S,R-sulfoximine prior to Fe(2+) addition resulted in a more rapid initial rate of oxygen depletion and a shorter time for the (*)NO-induced inhibition of oxygen consumption. Complementary studies of this iron-induced lipid peroxidation, using thiobarbituric acid reactive substances as a marker, also demonstrated the protective effects of (*)NO. This protection of cells against lipid peroxidation also manifested itself as a reduction in trypan blue uptake, an observation demonstrating the protective effects of (*)NO on membrane integrity. We conclude that (*)NO protects HL-60 human leukemia cells from lipid peroxidation and that this protection ameliorates the toxicity of the oxidation processes initiated by Fe(2+) and dioxygen.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Membrane / drug effects
  • Cell Membrane / physiology
  • HL-60 Cells
  • Humans
  • Iron / pharmacology*
  • Kinetics
  • Lipid Peroxidation / drug effects
  • Lipid Peroxidation / physiology*
  • Models, Chemical
  • Nitric Oxide / pharmacology*
  • Oxidative Stress / drug effects
  • Oxidative Stress / physiology*
  • Oxygen Consumption / drug effects
  • Thiobarbituric Acid Reactive Substances / analysis

Substances

  • Thiobarbituric Acid Reactive Substances
  • Nitric Oxide
  • Iron