Objective: To investigate the effect of the synovial fluid from knee joints of rheumatoid arthritis (RA) patients with different severities of joint destruction on osteoclastogenesis and bone resorption.
Methods: Synovial fluid was harvested from the knee joints of 59 RA patients and 37 ostcoarthritis (OA) patients. RA patients with Larsen's knee grade 1-3 were classified as mild RA (n = 30) and those with grade 4 or 5 as severe RA (n = 29). Cytokine concentrations in synovial fluid were measured by ELISA. Osteoclastogenesis was measured by tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cell (MNC) formation in a co-culture of mouse osteoblastic cells and bone marrow cells, and bone resorption by 45Ca release from pre-labelled cultured neonatal mouse calvariae.
Results: The synovial fluid of severe RA patients significantly stimulated TRAP-positive MNC formation and 45Ca release compared to those of mild RA and OA patients. Among the bone-resorptive cytokines fibroblast growth factor-2 (FGF-2), tumour necrosis factor alpha (TNF-alpha), interleukin-1alpha (IL-1alpha), IL-6 and soluble IL-6 receptor (sIL-6R), only FGF-2 concentration in the synovial fluid was positively correlated to Larsen's grade, and severe RA patients showed significantly higher FGF-2 concentrations than mild RA patients. Osteoclastogenesis in a co-culture system which was stimulated by the synovial fluid of severe RA patients was significantly inhibited by a neutralizing antibody against FGF-2 and this inhibition was stronger than antibodies against other cytokines.
Conclusion: The increase in endogenous FGF-2 levels in the synovial fluid of RA patients may play a role in the joint destruction by inducing osteoclastogenesis.