To identify transcriptionally regulated mediators associated with the cell cycle, we adopted the differential mRNA display technique for cell cultures of Tetrahymena pyriformis synchronized by cyclic heat treatment. One cDNA fragment that was expressed differently during synchronous cell division had a greatly decreased expression at 30 min after the end of heat treatment (EHT). Using this fragment as a probe, we isolated the full-length cDNA for T. pyriformis acetyl-CoA synthetase (TpAcs) which encodes a 651 amino acid polypeptide with a predicted molecular mass of 72.8 kDa. The deduced amino acid sequence of T. pyriformis ACS shows 42% sequence identity compared with that of Lysobacter sp. acetyl-CoA synthetase (ACS), an enzyme which catalyses the formation of acetyl-CoA from acetate via an acetyl-adenylate intermediate. The deduced sequence is also 41% and 40% identical compared with those of Pseudomonas putida and Coprinus cinereus ACS, respectively. The deduced sequence of T. pyriformis ACS also shares similar characteristics of the conserved motifs I and II in the ACS family. To further investigate the actions of the gene encoding this enzyme, mRNA expression was determined during the course of synchronized cell division in T. pyriformis. Northern blot results show that the mRNA level was dramatically decreased at 30 min after EHT prior to entering synchronous cell division (which occurs 75 min after EHT), suggesting that mRNA expression of the TpAcs was associated with the cell cycle and that the down-regulated expression of TpAcs at 30 min after EHT would be required for the initiation of the oncoming synchronous cell division in T. pyriformis.